Electrical characterization ofpolymeric membranes PVDF/CF3COOLi
Caracterización Eléctrica de Membranas Poliméricas PVDF/ CF3COOLi
Main Article Content
Objective: This paper studies the effects of lithium trifluoroacetate (CF3 COOLi) when used in a Polyvinylidene fluoride (PVDF) membrane to improve its ionic conductivity for use as electrolyte for electrochemical devices. Method: CF3 COOLi/PVDF Ionic conductive membranes have been prepared by solution method. The samples were characterized by impedance spectroscopy (IS) with temperatures ranging from 298 K at 373 K. Results: The plots of conductivity with the inverse of temperature show an Vogel-Tamman-Fulcher (VTF) behavior, with pseudo activation energies between 7.30 × 10-3 y 5.05 × 10-4 eV. Conclusions: The higther conductivity (3.848 × 10-4 S cm-1) was obtain at room temperature to higth concentration of CF3 COOLi, this values is similarity with results from other documents.
Downloads
Article Details
A. S. Shaplov, D. O. Ponkratov, P-H. Aubert, E. I. Lozinskaya, C. Plesse, A. Maziz, P. S. Vlasov, F. Vidal,Y. S. Vygodskii, “Truly solid state electrochromic devices constructed from polymeric ionic liquids as solid electrolytes and electrodes formulated by vapor phase polymerization of 3,4-ethylenedioxythiophene”, Polymer, vol. 55, no. 16, pp. 3385- 3396, 2014.
J. H. Castillo. Fundamentos de caracterización eléctrica de materiales no metálicos mediante circuitos equivalentes, 2010.
M. I. Delgado. “Síntesis y caracterización térmica y eléctrica del complejo polimérico peo/cf3coona”. Tesis de Maestría, Universidad del Valle, Departamento de Física, Cali, 2000.
K. P. Padmasree, R. A. Montalvo Lozano, S. M. Montemayor, A. F. Fuentes, “Electrical conduction and dielectric relaxation process in Ce0.8Y0.2O1.9 electrolyte system”, Journal of Alloys and Compounds, vol. 509, pp. 8584-8589,2011.
B-E. Mellander, M. A. Vargas, R. A. Vargas, “New proton conducting membranes base on PV AL/H3PO2/ H2O”, Electrochemical Acta, vol. 44, pp. 4227-4232, 1999.
M. Nádherná, F. Opekar, J. Reiter, K. Štulík, “A planar, solidstate amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix”, Sensors and Actuators B, vol. 161, no. 1, pp. 811-817, 2012.
N. Muniyandi, N. Kalaiselvi, P. Periyasamy, R. Thirunakaran, B. Ramesh babu, S. Gopukumar, T. Premkumar, N. G. Renganathan, M. Raghavan, “Optimisation of PVDF-based polymer electrolytes”, Journal Power Sources, vol. 96, no.1, pp.14-19, 2001.
R. A. Vargas Nori M. Jurado, I. Delgado, “Conductividad iónica en nuevos compositos (PEO)10 (CF3COONa) – X % Al2O3”, Universitas Scientiarum, vol. 18, no. 2, pp.173-80, 2013.
M. Hema, P. Tamilselvi, “Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte”, Physica B, vol. 437, pp. 53-57, 2014.
P. Sivakumar, S. Rajendran, “An investigation of PV dF/PV C-based blend electrolytes with EC/PC as plasticizers in lithium battery applications”, Physica B, vol. 403, no. 4, pp. 509-516, 2008.
R. A. Vargas, Y. A. Gonzalez, “Estudio De Las Propiedades Termodinámicas Y Eléctricas de Materiales Compuestos Poliméricos Basados en el Poli (Vinil Alcohol) PV A + H3PO2 + T iO2”, Revista iberoamericana de Polímeros, vol. 12, no. 1, pp. 64-75, 2011.
M. I. Delgado, N. M, Jurado, R. A. Vargas. “Phase diagram of polymer electrolyte: (x)(PEO)–( 1-x), CF3COOLi Diagrama de fases del polímero electrolito: (x) (PEO) – (1 - x)CF3COOLi”, Revista Facultad de Ingeniería, vol. 62, pp. 77-82, 2012.
N. M. Jurado, I. Delgado, R. A. Vargas, “Conductividad iónica en nuevos compositos (PEO)10(CF3COONa)-X% Al2O3”, Universitas Scientiarum, vol. 18, no. 2, pp. 173-180, 2013. [14] W. A. Van Schalkwijk, B. Scrosati. “Teperature effects on Li-ion cell performance”, en Avances in Lithium- Ion Batteries. New York: Plenum Publishers, 2002, pp. 309-344.