Identifying change points for linear mixed models: a solution through evolutionary algorithms
Estimación de puntos de cambio para modelos lineales mixtos: una solución usando algoritmos evolutivos
Main Article Content
Mathematical models are used to describe the relationship between two or more variables or features over the target population. Statistically, Simple Linear regression model has been extensively applied and the properties of their estimators are well known. However, this kind of model is not correctly applied in most cases, such as a longitudinal setting. Linear mixed models (LMMs) are useful when the measurements have been done over a specific interval of time. One of the most important assumptions, on both models, has been established as that the model holds for the whole data. In latter case, we could find one or several points which the function changes into. This proposal allows us to estimate the points where the model changes by minimizing a specific risk function or a loss function associated with the fitted model.
Downloads
Article Details
D. A. Harville, “Bayesian inference for variance components using only error contrasts,” Biometrika, vol. 61, no. 2, pp. 383–385, 1974.
——, “Maximum likelihood approaches to variance component estimation and to related problems,” Journal of the American Statistical Association, pp. 320–338, 1977.
G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons. New Jersey, 2003, vol. 936.
X. Yan, Linear regression analysis: theory and computing. World Scientific, 2009.
C. R. Rao, Linear statistical inference and its applications. John Wiley & Sons, 1973, vol. 2nd.Ed.
B. T. West, K. B. Welch, and A. T. Galecki, Linear mixed models: a practical guide using statistical software. Chapman & Hall, 2007.
G. Verbeke and G. Molenberghs, Linear mixed models for longitudinal data. Springer Science & Business Media, 2009.
J. Correa and J. Salazar, Introduction to mixed models. Universidad Nacional de Colombia Campus Medellín, 2016.
J. C. Pinheiro and D. M. Bates, Mixed-effects models in S and S-PLUS. Springer Science & Business Media, 2000.
G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied longitudinal analysis. John Wiley & Sons, 2008, vol. 998.
J. Hofrichter, Change point detection in generalized linear models.Graz University of Technology. doi:http://www.stat.tugraz.at/dthesis/Hofrichter07.pdf. Accessed on: 2015/04/22, 2007.
H. Küchenhoff, “An exact algorithm for estimating breakpoints in segmented generalized linear models,” 1996.
D. V. Hinkley, “Inference about the change-point in a sequence of random variables,” Biometrika, pp. 1–17, 1970.
R. Henderson, “Change-point problem with correlated observations, with an application in material accountancy,”
Technometrics, vol. 28, no. 4, pp. 381–389, 1986.
S. B. Fotopoulos, V. K. Jandhyala, and E. Khapalova, “Exact asymptotic distribution of change-point mle for change in the mean of gaussian sequences,” The Annals of Applied Statistics, pp. 1081–1104, 2010.
V. M. Muggeo, “Segmented: an r package to fit regression models with broken-line relationships,” R news, vol. 8, no. 1, pp. 20–25, 2008.
D. Sonderegger and M. D. Sonderegger, “R package: Sizer,” 2011.
R. Killick and I. Eckley, “changepoint: An r package for changepoint analysis,” Journal of Statistical Software, vol. 58, no. 3, pp. 1–19, 2014.
Y. Lai and P. Albert, “Identifying multiple change points in a linear mixed effects model,” Statist. Med, vol. 33, pp. 1015 – 1028. doi: 10.1002/sim.5996, 2014.
E. K. García, J. C. Correa, and J. C. Salazar, “A calibration function built from change points: a review,”
Comunicaciones en Estadí stica, vol. 10, no. 1, pp. 113–128, 2017.
K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical approach to global optimization. Springer Science & Business Media, 2006.
A. E. Eiben and J. E. Smith, Introduction to evolutionary computing. Springer, 2003, vol. 53.
C. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary algorithms for solving multi-objective problems. Springer Science & Business Media, 2007.
K. C. Tan, E. F. Khor, and T. H. Lee, Multiobjective evolutionary algorithms and applications. Springer Science & Business Media, 2006.
T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press, 1996.
E. Willighagen, M. Ballings, and M. M. Ballings, “Package genalg,” 2015.
K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline, “Deoptim: An r package for global optimization by differential evolution,” 2009.
D. Eddelbuette, B. Peterson, J. Ulrich, and Eddelbuette, “Rcppde: extending deoptim,” 2016.
S. Botero, “Secado de la madera cipres para uso industrial: estibas, molduras y muebles,” Bachelor Thesis, Tesis Universidad Nacional de Colombia. Sede Medellin. Facultad de Ciencias agropecuarias, May 1993.