Comportamiento del módulo dinámico y fatiga en mezclas asfálticas con escoria de horno al oxígeno

Comportamiento del módulo dinámico y fatiga en mezclas asfálticas con escoria de horno al oxígeno

Main Article Content

Ricardo Ochoa Díaz
Abstract

Oxygen furnace slag (BOF) is produced during the transformation of pig iron from the blast furnace into steel during the integrated iron and steel process. This waste has generated environmental problems due to accumulation and not proper disposal. Therefore, this study aims to analyze the use of dynamic modulus and fatigue behavior in asphalt mixtures with partial (50%) and total (100%) replacement of the coarse aggregate by BOF; the results were compared with the behavior of a mixture made with conventional aggregates. To achieve the objective, the chemical and physical properties of BOF were determined, the optimal content of asphalt cement was determined with the Ramcodes methodology and tests were carried out to evaluate the physical characteristics, dynamic modulus and fatigue of each type of mix. The results of this study show an improvement in fatigue behavior and a slight decrease in dynamic modulus in mixtures with BOF. Which allows us to deduce that the use of this waste is feasible and thus contribute to sustainable development and protection of the environment.

Downloads

Download data is not yet available.

Article Details

References
[1] N. C. C. Lobato, E. A. Villegas, and M. B. Mansur, “Management of solid wastes from steelmaking and galvanizing processes: A brief review,” Resour. Conserv. Recycl., vol. 102, pp. 49–57, 2015, doi: 10.1016/j.resconrec.2015.05.025.
[2] M. Omran and T. Fabritius, “Effect of steelmaking dust characteristics on suitable recycling process determining: Ferrochrome converter (CRC) and electric arc furnace (EAF) dusts,” Powder Technol., vol. 308, pp. 47–60, 2017, doi: 10.1016/j.powtec.2016.11.049.
[3] C. Kambole, P. Paige-Green, W. K. Kupolati, J. M. Ndambuki, and A. O. Adeboje, “Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa,” Constr. Build. Mater., vol. 148, pp. 618–631, 2017, doi: 10.1016/j.conbuildmat.2017.05.036.
[4] J. Xie et al., “Material characterization and performance evaluation of asphalt mixture Incorporating basic oxygen furnace slag (BOF) sludge,” Constr. Build. Mater., vol. 147, pp. 362–370, 2017, doi: 10.1016/j.conbuildmat.2017.04.131.
[5] O. González, “Producción residuos en Acerías Paz del Río S.A.,” in Entrevista, 2018.
[6] ASTM, “Section 04-Construction: Volume 04.02 Concrete and Aggregates. West Conshohocken, Pa,” 2005.
[7] ASTM, “Section 04-Construction: Volume 04.03 Road and Paving Materials. West Conshohocken. Pa,” 2005.
[8] Instituto Nacional de Vías INVIAS, “Normas para ensayos de materiales para carreteras,” Bogotá, 2013.
[9] F. Sánchez, P. Garnica, J. Gómez, and N. Pérez, “Ramcodes: Metodología racional para el análisis de densificación de geomateriales compactados.,” Sanfandila, Querétaro, 2002. [Online]. Available: https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt200.pdf.
[10] INVIAS, “Especificaciones generales de construcción de carreteras,” Bogotá, 2013. [Online]. Available: www.invias.gov.co.
[11] INVIAS, “Artículo 450-13 Mezclas asfálticas en caliente de gradación continua,” Bogotá, 2013.
[12] F. J. Sánchez-Leal, P. G. Anguas, M. Larreal, and D. B. L. Valdés, “Polyvoids : Analytical Tool for Superpave HMA Design,” J. Mater. Civ. Eng., vol. 23, no. 8, pp. 1129–1137, 2011, doi: 10.1061/(ASCE)MT.1943-5533.0000275.
[13] R. Ochoa and G. Grimaldo, “Validation of the polyvoids in the design of bituminous mixtures with coal tar as a binder,” Rev. Ing. Construcción, vol. 33, pp. 137–146, 2018, [Online]. Available: http://www.ricuc.cl/index.php/ric/article/view/827/pdf.
[14] A. E. de N. y certificación AENOR, “Mezclas bituminosas. Métodos de ensayo para mezclas bituminosas en caliente. Parte 26: Rigidez,” madrid, UNE-EN 12697-26, 2012. [Online]. Available: www.awenor.es.
[15] R. L. Lytton, Y. Zhang, X. Luo, and R. Luo, The fatigue cracking of asphalt mixtures in tension and compression. Elsevier Ltd., 2015.
[16] A. R. Pasandín and I. Pérez, “Fatigue performance of bituminous mixtures made with recycled concrete aggregates and waste tire rubber,” Constr. Build. Mater., vol. 157, pp. 26–33, 2017, doi: 10.1016/j.conbuildmat.2017.09.090.
[17] D. H. Shen, C. M. Wu, and J. C. Du, “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture,” Constr. Build. Mater., vol. 23, no. 1, pp. 453–461, 2009, doi: 10.1016/j.conbuildmat.2007.11.001.
[18] J. Xie, S. Wu, J. Lin, J. Cai, Z. Chen, and W. Wei, “Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation,” Constr. Build. Mater., vol. 36, pp. 467–474, 2012, doi: 10.1016/j.conbuildmat.2012.06.023.
[19] B. Das, S. Prakash, P. S. R. Reddy, and V. N. Misra, “An overview of utilization of slag and sludge from steel industries,” Resour. Conserv. Recycl., vol. 50, no. 1, pp. 40–57, 2007, doi: 10.1016/j.resconrec.2006.05.008.
[20] P. Y. Mahieux, J. E. Aubert, and G. Escadeillas, “Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders,” Constr. Build. Mater., vol. 23, no. 2, pp. 742–747, 2009, doi: 10.1016/j.conbuildmat.2008.02.015.
[21] J. Waligora, D. Bulteel, P. Degrugilliers, D. Damidot, J. L. Potdevin, and M. Measson, “Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach,” Mater. Charact., vol. 61, no. 1, pp. 39–48, 2010, doi: 10.1016/j.matchar.2009.10.004.
[22] H. Y. Poh, G. S. Ghataora, and N. Ghazireh, “Soil Stabilization Using Basic Oxygen Steel Slag Fines,” no. April, pp. 229–240, 2006.
[23] L. M. Juckes, “The volume stability of modern steelmaking slags,” vol. 9553, no. January, 2017, doi: 10.1179/03719550322500370.
[24] F. J. Sánchez-Leal, “Diseño acelerado de Mezclas Asfálticas con el Polígono de Vacíos. Metodología Ramcodes,” in Curso, 2018.
[25] F. Elizondo, G. Badilla, and Á. Ulloa, “Predicción de módulos resilientes en mezclas asfálticas mediante el modelo de Witczak,” Rev. Infraestruct. Vial, no. 19, pp. 40–50, 2008.
[26] S. Amelian, M. Manian, S. M. Abtahi, and A. Goli, “Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag,” J. Clean. Prod., vol. 176, pp. 329–337, 2018, doi: 10.1016/j.jclepro.2017.12.120.
[27] N. Li, A. A. A. Molenaar, M. F. C. Van De Ven, and S. Wu, “Characterization of fatigue performance of asphalt mixture using a new fatigue analysis approach,” Constr. Build. Mater., vol. 45, pp. 45–52, 2013, doi: 10.1016/j.conbuildmat.2013.04.007.
OJS System - Metabiblioteca |