Effect of pretrature with ultrasound in convention drying kinetics of bananas (musa paradisiaca)

Efecto del pretratamiento con ultrasonido en la cinética de secado convencional de banano (musa paradisiaca)

Main Article Content

Yesenia Campo-Vera
Mauricio Eduardo Contreras
Sandra Liliana Flórez
Lucero Villamizar
Abstract

The use of ultrasound in food processing has increased in the last decade due to the reduction in times, temperatures, microbial and enzymatic inactivation, extraction of components of great interest to different industries; without altering or modifying its nutritional or organoleptic value during the transformation processes of raw materials into products with added value. Considering itself, a green technology by not causing a negative impact on the environment. In this work, the effect of US pretreatment (40KHz/130W/30°C /10, 20 and 30 min) on convective drying at 60°C / 2m / s of banana (musa paradisiaca) was evaluated. A diffusion model was used to describe the drying kinetics and to quantify the influence of the US on the effective diffusivity of water. Observing that the US significantly increased (p> 0.05) the drying speed in all the samples treated with an average reduction of 31% in the drying time with respect to the control treatment; reaching a weight loss of 77% with respect to the initial weight (3.8 to 0.9 g.). The exponential model is the most adequate to predict the experimental curves of banana drying and showed that the application of US increased both the effective diffusivity and the mass transfer coefficient, as corroborated by the values of the explained variance of 98.5 a 99.3%.

Keywords

Downloads

Download data is not yet available.

Article Details

References
J.V. Santacatalina, JA. Cárcel, J. Fernández, A. Mulet, y JV. García, Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, vol 28, pp. 100-109, 2016.

C. Ertekin, O. Yaldiz, Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, vol 63, pp. 349-359, 2004.

L. Mayor, and AM. Sereno, Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering. [Online]. vol 61, pp. 373-386, 2004. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.9223&rep=rep1&type=pdf

D. I. Onwude, N. Hashim, K. Abdan, R. Janius, & G. Chen, The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, vol 241, pp.75-87, 2019.

X. Zhou, et al., Effects of infrared radiation drying and heat pump drying combined with tempering on the quality of long-grain paddy rice. International Journal of Food Science & Technology, vol 53, pp.2448-2456, 2018.

L. Z. Deng, et al., Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - a comprehensive review. Critical reviews in food science and nutrition, vol 59, pp.1408-1432, 2019.

J. Garcia-Noguera, IP. Oliveira, M. Gallão, L. Weller, S. Rodrigues, A. Fernandes, "Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency". Drying Technology, [Online]. vol 28, pp. 294–303, 2010. Available at: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1190&context=biosysengfacpub

C. Ortuño, JV. García-Pérez, JA. Cárcel, A. Femenía, A. Mulet, Modelling of ultrasonically assisted convective drying of eggplant. [Online]. vol 29, no. 13, pp. 1499-1509, 2010. Available at: https://www.researchgate.net/publication/233058271_Modeling_Ultrasonically_Assisted_Convective_Drying_of_Eggplant.

L. Hassini, S. Azzouz, R. Peczalski, A. Belghith, Estimation of potato moisture diffusivity from convective drying kinetics with correlation of shrinkage. Journal of Food Engineering, [Online]. vol 79, pp. 47-56, 2007. Available at: file:///C:/Users/RECTORA/Downloads/Estimation_of_potato_moisture_diffusivity_from_con.pdf

F. Fernandes, S. Rodrigues, Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, [Online]. vol 26, pp. 1509–1516, 2008. Available at: http://www.tandfonline.com/doi/abs/10.1080/07373930802412256?journalCode=ldrt20

D. Huang, K. Men, D. Li, T. Wen, Z. Gong, B. Sunden, & Z. Wu, Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 104950. doi:10.1016/j.ultsonch. 104950. 2019.

Y. Zhang, & N. Abatzoglou, Review: fundamentals, applications and potentials of ultrasound-assisted drying. Chemical Engineering Research and Design, 2019. doi:10.1016/j.cherd.2019.11.025

J.V. García-Pérez, JA. Cárcel, E. Riera, A. Mulet, Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, [Online]. vol. 27, pp. 281–287, 2009. Available at: http://www.itefi.csic.es/es/publicaciones/influence-applied-acoustic-energy-drying-carrots-and-lemon-peel

R.L. Monteiro, BA. Carciofi, & J. Laurindo, A microwave multi-flash drying process for producing crispy bananas. Journal of Food Engineering, vol. 178, pp.1–11, 2016.

A. Khampakool, S. Soisungwan, & S. Park. H, Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT - Food Science and Technology, vol. 99. pp.355–363, 2019.

F. Nadery-Dehsheikh, & S. Taghian-Dinani, Coating pretreatment of banana slices using carboxymethyl cellulose in an ultrasonic system before convective drying. Ultrasonics sonochemistry, vol. 52, pp.401-413, 2019.

B.S. Padam, H.S. Tin, F.Y. Chye, M.I. Abdullah, Banana by-products: an underutilized renewable food biomass with great potential, J. Food Sci. Technol., vol. 51, pp.3527–3545,2014. https://doi.org/10.1007/s13197-012-0861-2.

S.F. Sulaiman, N.A.M. Yusoff, I.M. Eldeen, E.M. Seow, A.A.B. Sajak, Supriatno, K.L. Ooi, Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.), J. Food Compos. Anal., vol. 21, no. 24, pp.1–10, 2011. https://doi.org/10.1016/j.jfca.2010.04.005.

I.S. Arvanitoyannis, A. Mavromatis, Banana cultivars, cultivation practicrs, and physicochemical properties, Crit. Rev. Food Sci. Nutr., vol. 49, no. 2, pp.113–135, 2009. https://doi.org/10.1080/10408390701764344.

V.A. Adisa, E.N. Okey, Carbohydrate and protein composition of banana pulp and peel as influenced by ripening and mold contamination, Food Chem., vol. 25, pp.85–91, 1987. https://doi.org/10.1016/0308-8146(87)90057-4.

F.L. Lukezic, W.J. Kaiser, M.M. Martinez, The incidence of crown rot of boxed bananas in relation to microbial populations of the crown tissue, Can. J. Bot., vol. 45, no. 4, pp.413–421, 1967. https://doi.org/10.1139/b67-041.

P.H.M. Sousa, G.A. Maia, M.S.M. Sousa Filho, R.W. Figueiredo, R.T. Nassu, M.A. e Sousa Neto, Influência da concentração e da proporção fruto:xarope na desidratação osmótica de bananas processadas, Cienc. E Tecnol., Aliment. vol. 23, pp.126–130, 2003. https://doi.org/10.1590/S0101-20612003000400024.

A. Martynenko, T. Kudra, Quality drying of medicinal plants, in: Proceedings of 19th international drying symposium, 24–27.08.2014, Lyon, Fr. EDP Sci. 2014. ISBN 978-2-7598-1631-6, pp.7, 2014.

A. Esehaghbeygi, K. Pirnazari, M. Sadeghi, Quality assessment of electrohydrodynamic and microwave dehydrated banana slices, LWT Food Sci. Technol., vol. 55, no. 2, pp.565–571, 2014. https://doi.org/10.1016/j.lwt.2013.10.010.

A.A. Silva, J.L. Barbosa-Junior, I.M. Jacintho-Barbosa, Green banana flour as a functional ingredient in food products, Cienc. Rural, vol. 45, no. 12, pp.2252-2258,. 2015.

M. P.A. Maunahan, J.M. Nuevo, J.Resorez, The role of gender in maintaining quality and reducing postharvest losses: The case of 'Bungulan' (Musa genome AAA) bananas for export, Acta Hortic., pp.21-27,2018.

S.J. Babalis, and V.G. Belessiotis, Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J. Food Eng., vol. 65, no. 3, pp.449–458, 2004.

J. Crank, The Mathematics of Diffusion, 2nd Ed., Oxford University Press, London, U.K. 1975.

A. Vega‐Gálvez, L. Puente‐Díaz, R. Lemus‐Mondaca, M. Miranda, Mathematical modeling of thin‐layer drying kinetics of cape gooseberry (Physalis peruviana L.). Journal of Food Processing and Preservation, vol. 38, no. 2, pp.728-736, 2012.

Y. P. Lin, J. H. Tsen, & V. A. King, Effects of far-infrared radiation on thefreeze-drying of sweet potato. Journal of Food Engineering, vol. 68, pp. 249–255, 2005.

I. Doymaz, Convective drying kinetics of strawberry. Chemical Engineering and Processing, vol. 47, pp. 914-919, 2008.

W. Senadeera, B.R. Bhandari, G. Young, And Y.B. Wijesinghe, Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J. Food Eng., vol. 58, pp.277–283,2003.

I.T. Tog˘ Rul, And D. Pehlivan, Modeling of drying kinetics of simple apricot. J. Food Eng. vol. 58, pp. 23–32, 2003.

L. Puente-Diaz, E. Echegaray-Pacheco, E.Castro-Montero, And K. Di-Scala, Application of mathemathical models to infrared assisted drying process of lemon waste (citrus limon (l.) burm. f. cv. genova). Dyna rev. fac. nac. minas, vol. 80, no. 181, pp. 91-97, 2013.

Y. Ozdemir, A. Ozturk, and S. Tüfekçi, Effect of two dipping pretreatment on drying kinetics of golden berry (Physalis peruviana L.). African Journal of Agricultural, vol. 11, no. 1, pp. 40-47, 2016.

G. Yıldız, N. İzli, H. Ünal, V. Uylaşer, Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). J Food Sci Technol, vol. 52, no. 4, pp.2320–2327, 2015

J.E. Vásquez-Parra, C.I. Ochoa-Martínez, And M. Bustos-Parra, Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, [Online]. vol. 119, no. 3, pp. 648–654, 2013.

A. Ayala-Aponte, L. Serna-Cock, J. Libreros-Triana, C. Prieto, & K. Di-Scala, Influence of osmotic pre-treatment on convective drying of yellow pitahaya. DYNA,vol. 81, no. 188, pp.145-151, 2014.

J. García-Pérez, C. Ozuna, C. Ortuño, J. Cárcel, & A. Mulet, Modelling ultrasonically assisted convective drying of eggplant. Drying Technology, vol. 29, no. 13, pp.1499-1509, 2011.

A. Wiktor, M. Sledz, M. Nowacka, K. Rybak, D. Witrowa-Rajchert, The influence of immersion and contact ultrasound treatment on selected properties of the apple tissue. Applied Acoustics, vol. 103, pp.136-142, 2016.

Fernandes F, Gallão M, Rodrigues S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT – Food Science and Technology, vol. 41, pp. 604–610,2008.

Fernandes F, Gallão M, Rodrigues S. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, vol. 90, pp. 186–190, 2009.

Rodrigues S, Oliveira F, Gallão M, Fernandes F. Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Drying Technolog, vol. 27, pp.220-225,2009.

Gamboa-Santos J, Montilla A, Soria A, Cárcel J, García-Pérez J, & Villamiel M. Impact of power ultrasound application on the quality of convective dried Strawberries. Tesis doctoral. Universidad Autónoma De Madrid. pp.232- 250, 2013.

Garcia-Noguera J, Oliveira IP, Gallão M, Weller L, Rodrigues S, y Fernandes. A."Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency". Drying Technology, vol. 28, pp. 294–303, 2010.

Wang, H., Zhao, Q.-S., Wang, X.-D., Hong, Z.-d. & Zhao, B. Pretreatment of ultrasound combined vacuum enhances the convective drying efficiency and physicochemical properties of okra (Abelmoschus esculentus). LWT, vol. 112, 108201, 2019.

Allahdad, Z., Nasiri, M., Varidi, M. & Varidi, M. J. Effect of sonication on osmotic dehydration and subsequent air-drying of pomegranate arils. Journal of Food Engineering, vol. 244, pp.202-211,2019.

Rojas, M. L. & Augusto, P. E. D. Ethanol and ultrasound pre-treatments to improve infrared drying of potato slices. Innovative Food Science & Emerging Technologies, vol. 49, pp. 65-75, 2018.

Rojas, M. L., Augusto, P. E. D., & Cárcel, J. A. Ethanol pre-treatment to ultrasound-assisted convective drying of apple. Innovative Food Science & Emerging Technologies, 102328. 2020. doi:10.1016/j.ifset.2020.10232

Rojas ML, Silveira I, Augusto PED, Ultrasound and etanol pre-treatments to improve convective drying: Drying, rehydration and carotenoid content of pumpkin, Food and Bioproducts Processing, 2019. doi: https://doi.org/10.1016/j.fbp.2019.10.008

Ozuna, C., Álvarez-arenas, T.G., Riera, E., Cárcel, J. V Garcia-. perez, J.A. Ultrasonics Sonochemistry Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, vol. 21, pp. 1235–1243, 2014.
OJS System - Metabiblioteca |