Review: Densification process of ceramic materials
Revisión: Métodos de densificación de materiales cerámicos
Main Article Content
Ceramics has played an important role in the technological and socio-economic development of humanity, so that they can be used to identify different historical periods of the humanity. Babylonians, Greek, Andalusian, among other cultures have used the ceramics and developed several methods to improve the products obtained by pottery. Generally, the ceramics can be divided into two big areas, traditional and structural ceramics. Ceramics manufactured with clay, Traditional Ceramics, currently they are being studied in the improvement of structural, abrasives, cement, refractory, among other materials. On the other hand, the ceramics developed as a result of new technologies and the exploitation of natural resources, Structural Ceramics, they are a great interest for the science of ceramic materials due to the development of ceramics with properties that incorporate attributes of various materials in only one material, in addition to the contributing to the phenomenological study at a scientific level. Advances in the processes of densification and doping of these materials have allowed to obtain ceramics with high mechanical resistance, high hardness, high resistance to attrition and corrosion, good chemical and thermal stability; features that have directly influenced the type of applications such as bulletproof vests, transparent shields, high temperature electrical insulators, superconducting devices, electronic materials among other applications
Downloads
Article Details
J. Schwartz and G. A. Merritt, “Proof of principle experiments for react wind sinter manufacturing of Bi 2 Sr 2 CaCu 2 O x magnets,” Supercond. Sci. Technol., vol. 20, no. 10, pp. L59–L62, 2007.
B. P. Zhang, J. F. Li, K. Wang, and H. Zhang, “Compositional dependence of piezoelectric properties in Na xK 1-xNbO 3 lead-free ceramics prepared by spark plasma sintering,” J. Am. Ceram. Soc., vol. 89, no. 5, pp. 1605–1609, 2006.
T. N. & M. N. Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani, Tatsuhiko Nonoyama, Kazumasa Takatori, Takahiko Homma, “Lead-free piezoceramics,” Phys. Status Solidi B, vol. 432, no. November, pp. 1–4, 2004.
G. S. Snow, “Improvements in Atmosphere Sintering of Transparent PLZT Ceramics,” J. Am. Ceram. Soc., vol. 56, no. 9, pp. 479–480, 1973.
H. Maiwa, “Dielectric and Electromechanical Properties of (K,Na)NbO 3 Ceramics Prepared by Hot Isostatic Pressing,” Ferroelectrics, vol. 491, no. 1, pp. 71–78, 2016.
R. R. Menezesa, P. M. Soutob, and R. H. G. A. Kiminamib, “Microwave fast sintering of submicrometer alumina,” Mater. Res., vol. 13, no. 3, pp. 345–350, 2010.
X. Zhu, Piezoelectric ceramics material: processing, properties, charaterization and aplications., no. March. 2017.
A. S. S. De Camargo et al., “Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun., vol. 137, no. 1–2, pp. 1–5, 2006.
A. SUÁREZ, M. Durruthy-Rodríguez, D. MAYOR, A. Aulet, and C. BELLO, INFLUENCIA DEL DOPAJE SIMULTANEO CON La Y Nb EN LA SINTERIZACION DE CERAMICAS PIEZOELECTRICAS PZT 54/46, vol. 19, no. January. 2002.
K. Uchino, Future of Ferroelectric Devices, 2nd ed. 2009.
S. COHEN, “Novel VOAs provide more speed and utility,” Laser Focus world, vol. 36, no. 11, pp. 139–146, 2000.
S. Cohen and P. Melman, “New breakthrough design for VOAs based on electro-optic materials.”
H. Jiang et al., “Transparent electro-optic ceramics and devices,” Proc. SPIE, vol. 5644, no. 1, p. 380, 2005.
J. Y. Cheng and Q. Chen, “An ultrafast phase modulator for 3D imaging,” Sensors, Cameras, Syst. Sci. Appl. VII, vol. 6068, p. 60680L, 2006.
R. German, Sintering: From Empirical Observations to Scientific Principles. 2014.
C. Huerta, M. Vilafranca, and P. U. Jaume, “CERÁMICA: ORIGEN, EVOLUCIÓN Y TÉCNICAS,” 2007.
C. Huerta, M. Vilafranca, and P. U. Jaume, Cerámica: origen, evolución y técnicas., 1st ed. Castellon de la plana, 2007.
Y. Gong, Z.-G. Liu, Y.-J. Jin, J.-H. Ouyang, L. Chen, and Y.-J. Wang, “Effect of sintering process on the microstructure and ionic conductivity of Li7–xLa3Zr2–xTaxO12 ceramics,” Ceram. Int., vol. 45, no. 15, pp. 18439–18444, Oct. 2019.
L. Ouyang, W. Wang, H. Fan, Z. Weng, W. Wang, and H. Xue, “Sintering behavior and microwave performance of CaSiO3 ceramics doped with BaCu(B2O5) for LTCC applications,” Ceram. Int., vol. 45, no. 15, pp. 18937–18942, Oct. 2019.
H.-M. Kim, Y.-W. Kim, and K.-Y. Lim, “Pressureless sintered silicon carbide matrix with a new quaternary additive for fully ceramic microencapsulated fuels,” J. Eur. Ceram. Soc., vol. 39, no. 14, pp. 3971–3980, Nov. 2019.
E. de A. Francisco Alcántara, “Cerámica.” [Online]. Available: http://ceramica.name/tecnologia_ceramica/ceramica/Ceramica.html. [Accessed: 11-Mar-2018].
N. Shanbhog, V. K., A. N., and S. R. Bakshi, “Effect of graphene nano-platelet addition on the microstructure and spark plasma sintering kinetics of zirconium diboride,” Int. J. Refract. Met. Hard Mater., vol. 84, p. 104979, Nov. 2019.
S. F. Wang et al., “Transparent ceramics: Processing, materials and applications,” Prog. Solid State Chem., vol. 41, no. 1–2, pp. 20–54, 2013.
M. H. Bocanegra-Bernal, “Hot isostatic pressing (HIP) technology and its applications to metals and ceramics,” J. Mater. Sci., vol. 39, no. 21, pp. 6399–6420, 2004.
S.-F. Liu, I. R. Abothu, and S. Komarneni, “PLZT ceramics prepared from conventional and microwave hydrothermal powders,” Mater. Lett., vol. 38, no. October 2014, pp. 344–350, 1999.
G. H. Haertling, “Ferroelectric ceramics: History and technology,” J. Am. Ceram. Soc., vol. 82, no. 4, pp. 797–818, 1999.
L. A. Celi, A. C. Caballero, M. Villegas, P. Durán, C. Moure, and J. F. Fernández, “Cerámica y Vidrio Microestructura y propiedades de materiales cerámicos PZT con control de crecimiento de grano,” vol. 491, pp. 487–491, 1999.
B. Malič et al., “Sintering of lead-free piezoelectric sodium potassium niobate ceramics,” Materials (Basel)., vol. 8, no. 12, pp. 8117–8146, 2015.
G. S. Snow, “Fabrication of Transparent Electrooptic PLZT Ceramics by Atmosphere Sintering,” J. Am. Ceram. Soc., vol. 56, no. 2, pp. 91–96, 1973.
F. A. Londoño, J. A. Eiras, and D. Garcia, “Optical and electro-optical properties of (Pb,La)TiO3 transparent ceramics,” Opt. Mater. (Amst)., vol. 34, no. 8, pp. 1310–1313, 2012.
D. Garcia, “Síntese e caracterizacao de ceramicas ferroelectricas transparentes do sistema (Pb,La)(Zr,Ti)O3,” universidade de Sao Paulo, 1995.
K. R. Carroll, J. M. Pond, D. B. Chrisey, J. S. Horwitz, R. E. Leuchtner, and K. S. Grabowski, “Microwave measurement of the dielectric constant of Sr 0.5 Ba 0.5 TiO 3 ferroelectric thin films,” Appl. Phys. Lett., vol. 62, no. 15, pp. 1845–1847, 1993.
Y. Zhen, J. F. Li, K. Wang, Y. Yan, and L. Yu, “Spark plasma sintering of Li/Ta-modified (K,Na)NbO 3 lead-free piezoelectric ceramics: Post-annealing temperature effect on phase structure, electrical properties and grain growth behavior,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 176, no. 14, pp. 1110–1114, 2011.
R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc., vol. 27, no. 11, pp. 3331–3337, 2007.
L. Wen, X. Sun, Z. Xiu, S. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc., vol. 24, no. 9, pp. 2681–2688, 2004.
M. Hoch and K. M. Nair, “Densification characteristics of ultrafine powders,” Ceramurg. Int., vol. 2, no. 2, pp. 88–97, 1976.
X. F. Wang, H. M. Xiang, X. Sun, J. C. Liu, F. Hou, and Y. C. Zhou, “Porous YbB6 Ceramics Prepared by in Situ Reaction between Yb2O3 and B4C Combined with Partial Sintering,” J. Am. Ceram. Soc., vol. 98, no. 7, pp. 2234–2239, 2015.
V. G. Lee and T. H. Yeh, “Sintering effects on the development of mechanical properties of fired clay ceramics,” Mater. Sci. Eng. A, vol. 485, no. 1–2, pp. 5–13, 2008.
X. Kuang, G. Carotenuto, and L. Nicolais, “A review of ceramic sintering and suggestions on reducing sintering temperatures,” Adv. Perform. Mater., vol. 4, no. 3, pp. 257–274, 1997.
C. Baudin and J. S. Moya, “Sinterizacion en estado solido,” Boletín la Soc. Española Ceram. y Vidr., vol. 22, pp. 133–142, 1983.
A. Herabut and A. Safari, “Processing and Electromechanical Properties of (Bi0.5Na0.5)(1-1.5x)LaxTiO3 ceramics,” J. Am. Ceram. Soc., vol. 80, pp. 2954–2958, 1997.
A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics, vol. 2, no. 12, pp. 721–727, 2008.
J. Schwartz and G. A. Merritt, “Proof-of-principle experiments for react–wind–sinter manufacturing of Bi 2 Sr 2 CaCu 2 O x magnets,” Supercond. Sci. Technol., vol. 20, no. 10, pp. L59–L62, 2007.
J. D. S. AMADO, P. Y. M. VILLAFRADES, and E. M. C. TUTA, “Caracterización De Arcillas Y Preparación De Pastas Cerámicas Para La Fabricación De Tejas Y Ladrillos En La Región De Barichara, Santander,” Dyna, vol. 78, no. 167, pp. 50–58, 2011.
J. A. Muñoz Chaves, R. A. Muñoz Menese, P. Mancill, and J. E. Rodríguez Páez, “Estudio del procesamiento cerámico de las arcillas de la vereda ‘ La Codicia ’ ( Guapi , Colombia ) para potencializar su uso en la elaboración de piezas cerámicas,” Fac. Ing. Univ. Antioquia., vol. 42, pp. 68–78, 2007.
X.-F. Wang, H.-M. Xiang, X. Sun, J.-C. Liu, F. Hou, and Y.-C. Zhou, “Porous YbB 6 Ceramics Prepared by In Situ Reaction between Yb 2 O 3 and B 4 C Combined with Partial Sintering,” J. Am. Ceram. Soc., vol. 2239, no. 36123, p. n/a-n/a, 2015.
A. Piras et al., “Structural and morphological investigation of ceria-promoted Al 2O3 under severe reducing/oxidizing conditions,” J. Phys. Chem. B, vol. 109, no. 22, pp. 11110–11118, 2005.
F. J. DELGADO GARCÍA, MENOCAL, J.A., MOREJÓN, L., MARTÍNEZ, S., GIL, “Cerámicas de circona para aplicaciones biomédicas,” BIomecanica, vol. 11, pp. 46–52, 2003.
A. SUÁREZ, M. Durruthy-Rodríguez, D. MAYOR, A. Aulet, and C. BELLO, INFLUENCIA DEL DOPAJE SIMULTANEO CON La Y Nb EN LA SINTERIZACION DE CERAMICAS PIEZOELECTRICAS PZT 54/46, vol. 19. 2002.
E. Bash, “Cerámicas: cocción,” PhD Propos., vol. 1, pp. 1–26, 2015.
E. Giraldo Tobón and P. Abad Mejía, “Obtención de precursores con tamaño de artícula nano y micrométrico para la fabricación de materiales cerámicos con propiedades eléctricas no lineales. (Spanish),” OBTAINING PRECURSORS WITH NANO MICROMETRIC Part. SIZE Synth. Ceram. Mater. WITH NONLINEAR Electr. Prop., pp. E15–E23, 2014.
M. Suárez, Matriales Cerámicos Policristalinos Al2O3 y YAG Con funcionalidad Óptica. 2009.
H. Lee, R. Freer, H. Lee, and R. Freer, “The mechanism of abnormal grain growth in Sr0 . 6Ba0 . 4Nb2O6 ceramics,” vol. 376, no. 1997, 2012.
T. Hiroshima, K. Tanaka, and T. Kimura, “Effects of microstructure and composition on the curie temperature of lead barium niobate solid solutions.” p. 79, 1996.
T. Takeuchi, M. Tabuchi, I. Kondoh, N. Tamari, and H. Kageyama, “Synthesis of Dense Lead Titanate Ceramics with Submicrometer Grains by Spark Plasma Sintering,” J. Am. Ceram. Soc., vol. 83, no. 3, pp. 541–544, 2000.
G. Zhang et al., “Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing,” APL Mater., vol. 4, no. 6, 2016.
R. E. JAEGER and L. EGERTON, “Hot Pressing of Potassium-Sodium Niobates,” J. Am. Ceram. Soc., vol. 45, no. 5, pp. 209–213, 1962.
H. F. Alkali and N. Ceramics, “Properties of Hot-Pressed Ferroelectric Alkali Niobate Ceramics,” no. June, pp. 329–330, 1967.
J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, “(K, Na) NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges,” J. Am. Ceram. Soc., vol. 96, no. 12, pp. 3677–3696, 2013.
M. P. Groover, Fundamentos de manufactura moderna, 3rd ed. México, 2007.
H. T. Larker, Hot Isostatic Pressing of Ceramics - an Overview. Elsevier Science B.V., 1994.
B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, and M. Shokouhimehr, “Temperature dependence of microstructure evolution during hot pressing of ZrB2–30vol.% SiC composites,” Int. J. Refract. Met. Hard Mater., vol. 54, pp. 7–13, 2016.
J. Jia et al., “B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering,” J. Mater. Eng. Perform., 2018.
J. E. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys., vol. 3, pp. 220–292, 1952.
G. S. SNOW, “Fabrication of Transparent Electrooptic PLZT Ceramics by Atmosphere Sintering,” J. Am. Ceram. Soc., vol. 56, no. 2, pp. 91–96, 1973.
Y. Abe, K. Kakegawa, H. Ushijima, Y. Watanabe, and Y. Sasaki, “Fabrication of Optically Transparent Lead Lanthanum Zirconate Titanate ((Pb,La)(Zr,Ti)O3) Ceramics by a Three-Stage-Atmosphere-Sintering Technique,” J. Am. Ceram. Soc., vol. 85, no. 2, pp. 473–475, 2004.
R. Wang, R. Xie, T. Sekiya, and Y. Shimojo, “Fabrication and characterization of potassium – sodium niobate piezoelectric ceramics by spark-plasma-sintering method,” vol. 39, pp. 1709–1715, 2004.
Jing-Feng Li *, “Ferroelectric and piezoelectric properties of fine-grained na05k05nbo3 lead free piezoelectric ceramics prepared by spark plasma sintering,” vol. 709, pp. 706–709, 2006.
Á. C. Isabel, “COMPOSITES MULTIFUNCIONALES DE ALÚMINA SINTERIZADOS POR SPARK PLASMA SINTERING,” 2012.
Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, “Spark Plasma Sintering of Alumina,” J. Am. Ceram. Soc., vol. 85, no. 8, pp. 1921–1927, 2002.
M. Gurbuz, O. May, and A. Do, “Sintering of 94Na 0.5 Bi 0.5 TiO 3 -6BaTiO 3 with SPS and conventional methods for crystal growth,” no. March, pp. 1–6, 2016.
E. Olevsky and L. Froyen, “Constitutive modeling of spark-plasma sintering of conductive materials,” Scr. Mater., vol. 55, no. 12, pp. 1175–1178, 2006.
Á. C. Isabel, “Composites multifuncionales de alúmina sinterizados por spark plasma sintering,” 2012.