Sensitivity analysis and correlation between rutting and deflection in flexible pavement structures
Análisis de sensibilidad y correlación entre el ahuellamiento y la deflexión en estructuras de pavimento flexible
Main Article Content
The present investigation shows the sensitivity analysis and the correlation between the rutting or deformation and the deflection in a flexible pavement structure to verify the design criteria of deformation or rutting and deflection of the structural model. The methodology applied for rutting analysis was established in the guide for the mechanical-empirical design of flexible pavements "Mechanistic-Empirical Pavement Design Guide - MEPDG" developed by the AASHTO (American Association of State Highway and Transportation Officials) and the theory elastic for deflection calculation. The variables analyzed were contact pressure, load per tire, modulus of elasticity, and thickness of the different layers of the flexible pavement structural model. As a conclusion of the investigation carried out, the variables most sensitive to rutting of flexible pavement structures are obtained: the dynamic modulus of the asphalt mix, the load per tire, the thickness of the asphalt layer, the contact pressure, and the most sensitive variables. to deflection are the load per tire, the resilient modulus of the subgrade, the thickness of the asphalt layer and the dynamic modulus of the asphalt layer; Also, the correlations between the deflection, the design variables and the rutting of flexible pavement structures are presented, this information is very useful for designer engineers of pavement structures.
Downloads
Article Details
C. Sandoval and A. Orobio, “Efectos de las tolerancias de construcción en el desempeño de los pavimentos flexibles,” Rev. Ing. construcción, vol. 28, no. 3, 2013, doi: 10.4067/s0718-50732013000300004.
F. Leiva, E. Pérez, J. Aguiar, and L. Loría, “Modelo de deformación permanente para la evaluación de la condición del pavimento / Permanent deformation model for pavement condition assessment,” Rev. Ing. construcción, vol. 32, no. 1, 2017. DOI: https://dx.doi.org/10.4067/S0718-50732017000100004.
A. K. Singh and J. P. Sahoo, “Rutting prediction models for flexible pavement structures: a review of historical and recent developments,” J. Traffic Transp. Eng. (English Ed., May 2021, doi: 10.1016/j.jtte.2021.04.003.
Z. Zhao, J. Jiang, F. Ni, Q. Dong, J. Ding, and X. Ma, “Factors affecting the rutting resistance of asphalt pavement based on the field cores using multi-sequenced repeated loading test,” Constr. Build. Mater., vol. 253, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118902.
Y. Du, J. Chen, Z. Han, and W. Liu, “A review on solutions for improving rutting resistance of asphalt pavement and test methods,” Construction and Building Materials, vol. 168. Elsevier Ltd, pp. 893–905, Apr. 20, 2018, doi: 10.1016/j.conbuildmat.2018.02.151.
S. Islam, A. Sufian, M. Hossain, R. Miller, and C. Leibrock, “Mechanistic-Empirical design of perpetual pavement,” 2018, doi: 10.1080/14680629.2018.1546218.
G. Lian-Sheng, D. Han-Cheng, and C. Jia-Qi, “Research on Predicting the Rutting of Asphalt Pavement Based on a Simplified Burgers Creep Model,” Math. Probl. Eng., vol. 2017, 2017, doi: 10.1155/2017/3459704.
R. Guo, T. Nian, and F. zhou, “Analysis of factors that influence anti-rutting performance of asphalt pavement,” Constr. Build. Mater., vol. 254, Sep. 2020, doi: 10.1016/j.conbuildmat.2020.119237.
S. Kim, H. Ceylan, and K. Gopalakrishnan, “Effect of M-E Design Guide Inputs on Flexible Pavement Performance Predictions,” Road Mater. Pavement Des., vol. 8, no. 3, pp. 375–397, Jan. 2007, doi: 10.1080/14680629.2007.9690080.
S. Islam, A. Sufian, M. Hossain, R. Miller, and C. Leibrock, “Mechanistic-Empirical design of perpetual pavement,” Road Mater. Pavement Des., vol. 21, no. 5, pp. 1224–1237, Jul. 2020, doi: 10.1080/14680629.2018.1546218.
H. Gong, Y. Sun, Z. Mei, and B. Huang, “Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks,” Constr. Build. Mater., vol. 190, pp. 710–718, Nov. 2018, doi: 10.1016/j.conbuildmat.2018.09.087.
C. Zhang, H. Wang, Z. You, and B. Ma, “Sensitivity analysis of longitudinal cracking on asphalt pavement using MEPDG in permafrost region,” J. Traffic Transp. Eng. (English Ed., vol. 2, no. 1, pp. 40–47, Feb. 2015, doi: 10.1016/j.jtte.2015.01.004.
E. Oscarsson, “Modelling flow rutting in in-service asphalt pavements using the mechanistic-empirical pavement design guide,” Road Mater. Pavement Des., vol. 12, no. 1, pp. 37–56, Jan. 2011, doi: 10.1080/14680629.2011.9690351.
G. Zou, J. Xu, and C. Wu, “Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design,” Int. J. Pavement Res. Technol., vol. 10, no. 3, pp. 282–288, May 2017, doi: 10.1016/j.ijprt.2017.03.008.
K. L. Roja, A. Padmarekha, and J. M. Krishnan, “Influence of warm mix additive and loading rate on rutting of warm mix asphalt pavement,” Int. J. Pavement Eng., vol. 20, no. 3, pp. 366–381, Mar. 2019, doi: 10.1080/10298436.2017.1293269.
S. Kodippily, J. Yeaman, T. Henning, and S. Tighe, “Effects of extreme climatic conditions on pavement response,” Road Mater. Pavement Des., vol. 21, no. 5, pp. 1413–1425, Jul. 2020, doi: 10.1080/14680629.2018.1552620.
N. Hossain, D. Singh, and M. Zaman, “Sensitivity of traffic input parameters on rutting performance of a flexible pavement using Mechanistic Empirical Pavement Design Guide,” Int. J. Pavement Res. Technol., vol. 9, no. 6, pp. 450–459, Nov. 2016, doi: 10.1016/j.ijprt.2016.09.003.
D. Moazami and R. Muniandy, “Determination of rutting performance of asphalt pavements considering realistic tire-pavement contact area,” Int. J. Pavement Res. Technol., vol. 14, no. 6, pp. 764–770, Nov. 2021, doi: 10.1007/s42947-020-0187-9.
H. Cheng, Y. Wang, L. Liu, and L. Sun, “Effects of using different dynamic moduli on predicted asphalt pavement responses in mechanistic pavement design,” Road Mater. Pavement Des., pp. 1–17, May 2021, doi: 10.1080/14680629.2021.1924842.
N. Su, F. Xiao, J. Wang, and S. Amirkhanian, “Characterizations of base and subbase layers for Mechanistic-Empirical Pavement Design,” Construction and Building Materials, vol. 152. Elsevier Ltd, pp. 731–745, Oct. 15, 2017, doi: 10.1016/j.conbuildmat.2017.07.060.
M. Crispino and V. Nicolosi, “Temperature Analysis in Prediction of the Rutting of Asphalt Concrete Bridge Pavements,” Road Mater. Pavement Des., vol. 2, no. 4, pp. 403–419, Jan. 2001, doi: 10.1080/14680629.2001.9689910.
Z. A. Alkaissi, “Effect of high temperature and traffic loading on rutting performance of flexible pavement,” Journal of King Saud University - Engineering Sciences, vol. 32, no. 1. King Saud University, pp. 1–4, Jan. 01, 2020, doi: 10.1016/j.jksues.2018.04.005.
C. Higuera, N. Olarte, y R. Soler. “Effect of the recycled rubber grain in the rutting of an asphalt mixture type MD-12”. Revista Respuestas. Vol. 24, no. 1, pp. 84-94. 2019. doi.org/10.22463/0122820X.1810
S. Erlingsson, “Rutting development in a flexible pavement structure, road materials and pavement design”, Taylor & Francis. vol. 13:2, pp. 218-234. 2012. http://dx.doi.org/10.108011480629.2012.682383.
L. Vásquez, y F. García, “An overview of asphalt pavement design streets and road”. Facultad de Ingeniería. Universidad de Antioquia. Vol. 98, pp. 10-26. Medellín. Colombia. 2021. Doi: 10.17530/udea.redin.20200367
C. Higuera, "Análisis de sensibilidad de la deformación plástica en las estructuras de pavimento flexible", Revista Respuestas, Volumen 26, Número 1, Enero – abril, 2022, pág. 62-74. https://doi.org/10.22463/0122820X.2665