AHP-TOPSIS for the design of wireless sensor networks in a cluster topology with sensor nodes on the ground and a sink node installed in an unmanned aerial vehicle

AHP-TOPSIS para el diseño de redes de sensores inalámbrica con topología tipo clúster con nodos sensores en tierra y nodo sumideros instalado en un vehículo aéreo no tripulado

Main Article Content

Abstract

Wireless sensor networks regularly consist of numerous nodes with low energy, communication, processing and storage capacity. The design of these networks presents challenges related to energy consumption, latency and data collection mode. The configuration of nodes in clusters and the use of unmanned aerial vehicle as a collector node improves the energy efficiency of the network and facilitates data collection. However, it requires the selection of a cluster leader node that concentrates the data collected by the other nodes and forwards it to the mobile equipment in the air. The objective of this work is to select the cluster leader node that optimizes the network performance. Multi-criteria decision making methods are applied for the selection. First, the hierarchical analytical process is used to identify the priority of the criteria used in the decision making process. Subsequently, the technique for the order of preference by similarity with the ideal solution is used for the selection of the leading node. As a result, the vector of priorities of the criteria is obtained: residual energy 56.51%; received signal strength level 27.2%, energy used in transmission 10.38%, and number of neighboring nodes 5.91%. In addition, the algorithm to optimize the selection of the leader node in the cluster is proposed.

Keywords

Downloads

Download data is not yet available.

Article Details

References

P. Bellavista, G. Cardone, A. Corradi, and L. Foschini, “Convergence of MANET and WSN in IoT urban scenarios,” IEEE Sensors Journal, vol. 13, no 10, pp. 3558-3567, 2013 doi:10.1109/ICE348803.2020.9122891 DOI: https://doi.org/10.1109/JSEN.2013.2272099

J. Rueda, and J. Talavera, “Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora,” Revista Colombiana de Computación, vol. 18, no 2, pp. 58-74, 2017 doi:10.29375/25392115.3218 DOI: https://doi.org/10.29375/25392115.3218

J. Gomez-Rojas, L. Camargo, and R. Montero, “Mobile wireless sensor networks in a smart city,” International Journal on Smart Sensing and Intelligent Systems, vol. 11, no 1, pp. 1-8, 2018 doi:10.21307/ijssis-2018-009 DOI: https://doi.org/10.21307/ijssis-2018-009

L. Camargo, J. Gomez-Rojas and M. Gasca, “La ciudad inteligente y la gestión de las TIC Caso de estudio: ciudad de Santa Marta. Santa Marta,” Editorial Unimagdalena, 2020. https://editorial.unimagdalena.edu.co/Editorial/Publicacion/4153 DOI: https://doi.org/10.21676/9789587463064

J. Rao, and S. Biswas, “Network-assisted sink navigation for distributed data gathering: Stability and delay-energy trade-offs," Computer Communications, vol. 33, no. 2, pp. 160-175, 2010 doi: 10.1016/j.comcom.2009.08.009. DOI: https://doi.org/10.1016/j.comcom.2009.08.009

L. Cañete, A. Soto, P. Olavarrieta and C. Alvarez, “Diseño de una tipología tipo clúster de prueba para IWSN estática basada en un algoritmo secuencial de optimización,” Trilogía: ciencia, tecnología y sociedad, vol. 24, no 1, pp. 103-113, 2012.

S. Nikhitha and M. Panda, “Optimal sensor data harvesting using a mobile sink,” Procedia computer science, vol. 143, no. 1, pp. 921-930, 2018. doi: 10.1016/j.procs.2018.10.343 DOI: https://doi.org/10.1016/j.procs.2018.10.343

S. Chellappan, and N. Dutta “Mobility in Wireless Sensor Networks,” In Advances in Computers, vol. 90, no. 1, pp. 185-222, 2013. doi: 10.1016/B978-0-12-408091- 1.00003-8. DOI: https://doi.org/10.1016/B978-0-12-408091-1.00003-8

C. Wang, F. Ma, J. Yan, D. De, and S. Das, “Efficient aerial data collection with UAV in large-scale wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 11, no. 11, pp. 286080. 2015. doi: 10.1155/2015/286080 DOI: https://doi.org/10.1155/2015/286080

P. Mitchell, J Qiu, H. Li and D. Grace, “Use of aerial platforms for energy efficient medium access control in wireless sensor networks,” Computer Communications, vol. 33. no. 4, pp. 500-512, 2010. doi: 10.1016/j.comcom.2009.10.015 DOI: https://doi.org/10.1016/j.comcom.2009.10.015

J. Neto, A. Boukerche, R. Yokoyama, D. Guidoni, R. Meneguette, J. Ueyama, and L. Villas, “Performance evaluation of unmanned aerial vehicles in automatic power meter readings,” Ad Hoc Networks, vol. 60, no. 1, pp. 11-25, 2017. doi: 10.1016/j.adhoc.2017.03.003 DOI: https://doi.org/10.1016/j.adhoc.2017.03.003

S. Pradhan, and K. Sharma, “Cluster head rotation in wireless sensor network: a simplified approach,” International Journal of Sensor and Its Applications for Control Systems, vol. 4, no. 1, pp. 1-10, 2016. doi: https://doi. org/10.14257/ijsacs. DOI: https://doi.org/10.14257/ijsacs.2016.4.1.01

K. Miranda, A. López-Jaimes, and A. Garcıa-Nájera, “Análisis multiobjetivo de la selección de lıderes en redes inalámbricas de sensores,” Research in Computing Science, vol. 134, no. 1, pp. 11-125, 2017 DOI: https://doi.org/10.13053/rcs-134-1-9

O. Gul and A. Erkmen. M. “Energy-efficient cluster-based data collection by a UAV with a limited-capacity battery in robotic wireless sensor networks,” Sensors, vol. 20, no. 20, pp. 5865, 2020. doi: 10.3390/s20205865 DOI: https://doi.org/10.3390/s20205865

W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” Proceedings of the 33rd International Conference on System Sciences (HICSS ‘00), 2000. doi: 10.1109/HICSS.2000.926982 DOI: https://doi.org/10.1109/HICSS.2000.926982

O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–79, 2004. doi: 10.1109/TMC.2004.41 DOI: https://doi.org/10.1109/TMC.2004.41

H. Okcu and M. Soyturk, “Distributed clustering approach for UAV integrated wireless sensor networks,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 15, no. 3, pp. 106-120, 2014. doi: 10.1504/IJAHUC.2014.059912 DOI: https://doi.org/10.1504/IJAHUC.2014.059912

D. Kumar, T. Aseri, and R. Patel, “EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks,” Computer communications, vol. 32, no. 4, pp. 662-667, 2009. doi: 10.1016/j.comcom.2008.11.025 DOI: https://doi.org/10.1016/j.comcom.2008.11.025

B. Khan, R. Bilal, and R. Young, “Fuzzy-TOPSIS based cluster head selection in mobile wireless sensor networks,” Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 928-943, 2018. doi: 10.1016/j.jesit.2016.12.004 DOI: https://doi.org/10.1016/j.jesit.2016.12.004

D. Mehta and S. Saxena, “Hierarchical WSN protocol with fuzzy multi-criteria clustering and bio-inspired energy-efficient routing (FMCB-ER),” Multimedia Tools and Applications, vol. 81, no. 1, pp. 35083–35116, 2020. doi: 10.1007/s11042-020-09633-8 DOI: https://doi.org/10.1007/s11042-020-09633-8

A. Robles, A. Polo 20 A., & Ospino Castro, A. (2017). An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy, 7(4), 38–47.

T. Saaty, “Decision making with the analytic hierarchy process,” Services Sciences, vol. 1, no. 1, pp. 83-98, 2008. doi: 10.1504/IJSSci.2008.01759 DOI: https://doi.org/10.1504/IJSSCI.2008.017590

T. Saaty, “The Analytic Hierarchy and Analytic Network Measurement Processes: Applications to Decisions under Risk” European journal of pure and applied mathematics, vol. 1, no. 1, pp. 122-196, 2008. doi: 10.29020/nybg.ejpam.v1i1.6 DOI: https://doi.org/10.29020/nybg.ejpam.v1i1.6

OJS System - Metabiblioteca |