State of the art focused on the thermal components that make up a test bench for turbochargers

Estado del arte enfocado a los componentes térmicos que conforman un banco de pruebas para turbocargadores

Main Article Content

Abstract

In this writing we will focus on presenting an approach to the state of the art of the thermal processes that make up a test bench for vehicular turbochargers, these are classified according to their source of energy such as that coming from an internal combustion engine, or from a cold flow or a resistance heating system or gas combustion chamber. The systematic review of scientific articles consulted through the Mendeley database manager, without date restrictions, in the Spanish and English languages, of which gray literature was included by manual search through Google Scholar, their abstracts were also reviewed. and in the necessary cases the complete articles, finally taking into account the articles that included recommendations on the mathematical models of the process referring to the turbochargers, combustion chamber, filters and plenum. The chosen documents were a total of 90, classified 20 in the first group as are the test benches for turbochargers and the second group are 57 that correspond to the components that conform to the test benches. These documents are located in time by years, for the first group from 2002 to 2019 and the second group from 2005 to 2021.

Keywords

Downloads

Download data is not yet available.

Article Details

References

L. G. Sánchez, M. de J. Fabela, O. Flores, J. R. Hernández, D. Vázquez, and M. E. Cruz, “Revisión de la Normativa Internacional sobre Límites de Emisiones Contaminantes de Vehículos de Carretera,” Instituto mexicano del transporte, no. 562. p. 83, 2019, [Online]. Available: https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt562.pdf.

P. Galbraith and G. Stillman, “A framework for identifying student blockages during transitions in the modelling process,” ZDM - Int. J. Math. Educ., vol. 38, no. 2, pp. 143–162, 2006, doi: 10.1007/BF02655886.

M. L. R. Palmero;, J. M. Acosta, and M. A. Moreira, “La teoría de los modelos mentales de johnson-laird y sus principios: una aplicación con modelos mentales de célula en estudiantes del curso de orientación universitaria,” Investig. em Ensino Ciências, vol. 6, no. 3, pp. 243–268, 2001.

R. G. Sargent, “Verification and validation of simulation models,” Simulation Research Group, New York, p. 10, 1984.

Kishurim, Tecnice, Cognitek, Tecnimat, Griduc, and Gidsaw, El modelamiento matemático en la formación del ingeniero, Primera ed. Bogota: Ediciones Fundación Universidad Central, 2013.

C. Turnitsa, J. J. Padilla, and A. Tolk, “Ontology for modeling and simulation,” Proc. - Winter Simul. Conf., pp. 643–651, 2010, doi: 10.1109/WSC.2010.5679124.

J. B. Heywood, “Combustion and its Modeling in Spark-Ignition Engines,” International Symposium COMODIA 94. pp. 1–15, 1994.

J. Arrègle, J. J. López, J. M. García, and C. Fenollosa, “Development of a zero-dimensional Diesel combustion model. Part 1: Analysis of the quasi-steady diffusion combustion phase,” Appl. Therm. Eng., vol. 23, no. 11, pp. 1301–1317, 2003, doi: 10.1016/S1359-4311(03)00079-6.

F. V. Bracco, “Introducing a new generation of more detailed and informative combustion models,” SAE Tech. Pap., 1975, doi: 10.4271/751187.

J. M. Luján, V. Bermúdez, J. R. Serrano, and C. Cervelló, “Test bench for turbocharger groups characterization,” SAE Technical Papers, p. 8, 2002.

M. Capobianco and S. Marelli, “Transient Performance of Automotive Turbochargers: Test Facility and Preliminary Experimental Analysis,” in SAE Technical Papers, 2005, vol. 2005-Septe, p. 11, doi: 10.4271/2005-24-066.

O. Leufvén, “Compressor Modeling for Control of Automotive Two Stage Turbochargers,” Linköpings universitet, 2010.

A. W. Costall, R. M. McDavid, R. F. Martinez-Botas, and N. C. Baines, “Pulse performance modeling of a twin entry turbocharger turbine under full and unequal admission,” J. Turbomach., vol. 133, no. 2, pp. 1–9, 2011, doi: 10.1115/1.4000566.

A. Blazevic and I. Filipovic, “Turbochargers performance testing with special emphasis on the compressor map,” in 11th International conference on accomplishments in Electrical and Mechanical Engineering and Information Technology, 2013, no. May 2016, pp. 961–968.

A. T. Thompson, “The effect of altitude on turbocharger performance parameters for heavy duty diesel engines: experiments and gt-power modeling,” Colorado State University, 2014.

A. Calo, “Advanced Characterisation of Turbochargers with the focus of Modelling Two-stage Turbocharging Systems Calogero Avola A thesis submitted for the degree of Doctor of Philosophy Department of Mechanical Engineering,” University of Bath, 2017.

F. A. R. Filho, R. M. Valle, J. E. M. Barros, and S. D. M. Hanriot, “Automotive turbocharger maps building using a flux test stand,” in SAE Technical Papers, 2002, p. 10, doi: 10.4271/2002-01-3542.

C. Holt, L. S. Andrés, S. Sahay, P. Tang, G. La Rue, and K. Gjika, “Test Response of a Turbocharger Supported on Floating Ring Bearings - Part I: Assessment of Subsynchronous Motions,” in Proceedings of the ASME Design Engineering Technical Conference, 2003, vol. 5 B, pp. 969–974, doi: 10.1115/detc2003/vib-48418.

M. I. Bin Othman, “Design and Build a Turbocharger Stad and Airflow Circuit Piping for an Automotive Turbocharger Testing Apparatus,” Universiti Malaysia Pahang, 2008.

B. S. G. Gregory David Uhlenhake, “Characterization of turbocharger performance and surge in a new experimental facility,” The Ohio State University, 2010.

P. Olmeda, A. Tiseira, V. Dolz, and L. M. García-Cuevas, “Uncertainties in power computations in a turbocharger test bench,” Meas. J. Int. Meas. Confed., vol. 59, pp. 363–371, 2015, doi: 10.1016/j.measurement.2014.09.055.

M. Cormerais, P. Chesse, and J. F. Hetet, “Turbocharger heat transfer modeling under steady and transient conditions,” Int. J. Thermodyn., vol. 12, no. 4, pp. 193–202, 2009, doi: 10.5541/ijot.1034000257.

H. Mohtar, “Increasing Surge Margin of Turbocharger Centrifugal Compressor Automotive Application,” Ecole Centrale de Nantes, 2010.

J. R. Serrano, P. Olmeda, A. Tiseira, L. M. García-Cuevas, and A. Lefebvre, “Theoretical and experimental study of mechanical losses inautomotive turbochargers,” Energy, vol. 55, pp. 888–898, Jun. 2013, doi: 10.1016/j.energy.2013.04.042.

G. S. Chesse;D.Chalet, “Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation,” SAE Tech. Pap., vol. 2016-April, no. April, 2016, doi: 10.4271/2016-01-1034.

D. Tomasz, “Turbocharger performance and surge definition on a steady flow turbocharger test stand,” University of BATH, 2019.

A. O. Mo. German, “Reconstrucción y diseño de una turboturbina,” Universidad de los Andes (Bogota), 2007.

G. G. Venson and J. E. M. Barros, “Turbocharger performance maps building using a hot gas test stand,” in Proceedings of the ASME Turbo Expo, 2008, pp. 777–785, doi: 10.1115/GT2008-50994.

D. Naundorf and H. Bolz, “Turbocharger test stand with a hot gas generator for high-performance supercharging systems,” MTZ worldwide, vol. 69, no. 10. pp. 22–24, 2008, doi: 10.1007/bf03226916.

R. Vijayakumar et al., “Design and testing a bespoke cylinder head pulsating flow generator for a turbocharger gas stand,” Energy, vol. 189, p. 116291, 2019, doi: 10.1016/j.energy.2019.116291.

A. Andrearczyk, “Flow characteristics of an automotive compressor with an additively manufactured rotor disc,” Arch. Thermodyn., vol. 42, no. 1, pp. 3–13, 2021, doi: 10.24425/ather.2021.136944.

A. A. Schmidt, J. Plánka, T. Schmidt, O. Grabherr, and D. Bartel, “Validation of a dry sliding wear simulation method for wastegate bearings in automotive turbochargers,” Tribol. Int., vol. 155, p. 106711, 2021, doi: 10.1016/j.triboint.2020.106711.

S. Mousavi, A. Nejat, S. S. Alaviyoun, and M. Nejat, “An Integrated Turbocharger Matching Program for Internal Combustion Engines,” J. Appl. Fluid Mech., vol. 14, no. 4, pp. 1209–1222, 2021, doi: 10.47176/JAFM.14.04.32037.

S. S. Alaviyoun and M. Ziabasharhagh, “Experimental thermal survey of automotive turbocharger,” Int. J. Engine Res., vol. 21, no. 5, pp. 766–780, 2020, doi: 10.1177/1468087418778987.

R. R. Erdmenger et al., “Development of a new low-cost tandem variable geometry turbocharging concept for turbocharger applications,” J. Eng. Gas Turbines Power, vol. 141, no. 3, pp. 1–10, 2019, doi: 10.1115/1.4041279.

R. McMullen and Y. Pino, “Conditioning Turbocharger Compressor Map Data for Use in Engine Performance Simulation,” SAE Int. J. Engines, vol. 11, no. 4, pp. 491–507, 2018, doi: 10.4271/03-11-04-0033.

J. E. Chung, J. W. Chung, N. H. Kim, S. W. Lee, and G. Y. Kim, “An investigation on the efficiency correction method of the turbocharger at low speed,” Energies, vol. 11, no. 2, pp. 1–14, 2018, doi: 10.3390/en11020269.

B. Wu, Z. Han, X. Yu, S. Zhang, X. Nie, and W. Su, “A method for matching two-stage turbocharger system and its influence on engine performance,” J. Eng. Gas Turbines Power, vol. 141, no. 5, p. 18, 2018, doi: 10.1115/1.4039461.

John Heywood, Internal Combustion Engine Fundamentals, Second edi. New York, 2018.

A. Romagnoli et al., “A review of heat transfer in turbochargers,” Renew. Sustain. Energy Rev., vol. 79, no. April, pp. 1442–1460, 2017, doi: 10.1016/j.rser.2017.04.119.

B. Remy, B. Bou-Saïd, and T. Lamquin, “Fluid inertia and energy dissipation in turbocharger thrust bearings,” Tribol. Int., vol. 95, pp. 139–146, 2016, doi: 10.1016/j.triboint.2015.11.014.

Q. Wang, J. Ni, X. Shi, and Y. Liu, “Gasoline Engine Turbocharger Matching Based on Vehicle Performance Requirements,” SAE Tech. Pap., vol. 2015-April, no. April, 2015, doi: 10.4271/2015-01-1283.

N. F. Sakellaridis, S. I. Raptotasios, A. K. Antonopoulos, G. C. Mavropoulos, and D. T. Hountalas, “Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications,” Energy, vol. 91, no. January, pp. 952–966, 2015, doi: 10.1016/j.energy.2015.08.049.

J. R. Serrano, P. Olmeda, F. J. Arnau, M. A. Reyes-Belmonte, and H. Tartoussi, “A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients,” Appl. Therm. Eng., vol. 89, pp. 587–599, 2015, doi: 10.1016/j.applthermaleng.2015.06.053.

S. Zhu, K. Deng, and S. Liu, “Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine,” Energy, vol. 87, pp. 628–637, 2015, doi: 10.1016/j.energy.2015.05.032.

F. Payri, P. Olmeda, F. J. Arnau, A. Dombrovsky, and L. Smith, “External heat losses in small turbochargers: Model and experiments,” Energy, vol. 71, pp. 534–546, Jul. 2014, doi: 10.1016/j.energy.2014.04.096.

J. Fu et al., “A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery,” Appl. Energy, vol. 113, pp. 248–257, 2014, doi: 10.1016/j.apenergy.2013.07.023.

G. Liśkiewicz, L. Horodko, M. Stickland, and W. Kryłłowicz, “Identification of phenomena preceding blower surge by means of pressure spectral maps,” Exp. Therm. Fluid Sci., vol. 54, pp. 267–278, 2014, doi: 10.1016/j.expthermflusci.2014.01.002.

X. Fang, W. Chen, Z. Zhou, and Y. Xu, “Empirical models for efficiency and mass flow rate of centrifugal compressors,” Int. J. Refrig., vol. 41, pp. 190–199, 2014, doi: 10.1016/j.ijrefrig.2014.03.005.

N. Sakellaridis and D. Hountalas, “Meanline modeling of radial turbine performance for turbocharger simulation and diagnostic applications,” SAE Technical Papers, p. 13, 2013.

M. Deligant, P. Podevin, and G. Descombes, “Experimental identification of turbocharger mechanical friction losses,” Energy, vol. 39, no. 1, pp. 388–394, 2012, doi: 10.1016/j.energy.2011.12.049.

H. Nguyen-Schäfer, Rotordynamics of Automotive Turbochargers. 2012.

M. Nakhjiri, P. Pelz, B. Matyschok, L. Däubler, and A. Horn, “Physical modeling of automotive turbocharger compressor: Analytical approach and validation,” SAE Technical Papers, p. 14, 2011.

X. Fang and Q. Dai, “Modeling of turbine mass flow rate performances using the Taylor expansion,” Appl. Therm. Eng., vol. 30, no. 13, pp. 1824–1831, 2010, doi: 10.1016/j.applthermaleng.2010.04.016.

M. Canova, F. Chiara, G. Rizzoni, and Y. Y. Wang, “Model-based characterization and analysis of diesel engines with two-stage turbochargers,” SAE Tech. Pap., no. April, 2010, doi: 10.4271/2010-01-1220.

F. Bozza and V. De Bellis, “Steady and unsteady modeling of turbocharger compressors for automotive engines,” SAE Tech. Pap., 2010, doi: 10.4271/2010-01-1536.

D. Japikse, “Turbomachinery performance modeling,” SAE Technical Papers, p. 26, 2009.

Guillaume Martin and Vincent Talon, “Implementing Turbomachinery Physics into Data Map-Based Turbocharger Models,” SAE Int., vol. 2, no. 1, pp. 211–229, 2009.

W. Zhuge, Y. Zhang, X. Zheng, M. Yang, and Y. He, “Development of an advanced turbocharger simulation method for cycle simulation of turbocharged internal combustion engines,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 223, no. 5, pp. 661–672, 2009, doi: 10.1243/09544070JAUTO975.

J. R. Serrano, F. J. Arnau, V. Dolz, A. Tiseira, and C. Cervelló, “A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling,” Energy Convers. Manag., vol. 49, no. 12, pp. 3729–3745, 2008, doi: 10.1016/j.enconman.2008.06.031.

M. Cormerais, J. F. Hetet, P. Chesse, and A. Maiboom, “Heat Transfer Analysis in a Turbocharger Compressor: Modeling and Experiments,” Copyright © 2006 SAE International, p. 12, 2006.

S. Arnold, C. Balis, D. Jeckel, S. Larcher, P. Uhl, and S. M. Shahed, “Advances in turbocharging technology and its impact on meeting proposed California GHG emission regulations,” SAE Technical Papers, no. 724, p. 16, 2005.

W. Yousef, V. Sychenkov, N. Davydov, V. Varsegov, and R. Khaliulin, “Experimental investigation of a two-zone dry low emission gas turbine combustor,” Procedia Environ. Sci. Eng. Manag., vol. 8, no. 1, pp. 275–281, 2021.

W. O. Irrazabal Bohorquez, J. P. Dutra, C. Martinez-Bazan, F. Cruz Peragón, and C. Gutiérrez-Montes, “The Effects of Burning Alcohol Fuels in Fuel Flexible Annular Gas Turbine Combustors on the Overall Operating Conditions,” in 18th Brazilian Congress of Thermal Sciences and Engineering, 2020, p. 10, doi: 10.26678/abcm.encit2020.cit20-0485.

M. Nalla Mohamed and R. Sivaprasad, “CFD simulation for the design of combustor in turbocharger test rig,” AIP Conf. Proc., vol. 2161, no. October, 2019, doi: 10.1063/1.5127597.

T. M. Onose Araujo Cunha and R. E. Pereira Silva, “Dimensioning of a Combustion Chamber for Microturbine Based on Automotive Turbocharger,” in 17th Brazilian Congress of Thermal Sciences and Engineering, 2018, no. November, p. 10, doi: 10.26678/abcm.encit2018.cit18-0670.

D. V. Pinto, “Análise comparativa do desempenho de turbocompressores veiculares com câmara de combustão tubular na microgeração de energia,” Universidade de Caxias do Sul, 2017.

S. P. Díaz, “Obtención de un Modelo Dinámico para Simulación de una Caldera de Vapor Industrial,” Planta, Valldolid (España), p. 8, 2016.

J. Peñalba Galán, “Modelado y Simulación de una Caldera Convencional.” p. 99, 2004.

E. Brizuela and S. D. Romano, “Análisis de la combustión completa e incompleta,” in Capitulo libro, vol. 2, 2003, pp. 24–48.

H. P. G. J. A. Cabrera Rodriguez, J. A. Barroso Estebanez, “Consideraciones sobre una cámara de combustión experimental de 400 kW,” Ing. Mecánica, vol. 3, no. 2, pp. 37-41–41, 2000.

T. T. K. C. Holden, “Modeling and Control of a Wet-Gas Centrifugal Compressor,” IEEE Transactions On Control Systems Technology, p. 16, 2020.

M. Shafieian, M. Zavar, and M. Rahmanian, “Simulation and control of surge phenomenon in centrifugal compressors,” Trait. du Signal, vol. 36, no. 3, pp. 259–264, 2019, doi: 10.18280/ts.360309.

A. M. Danilishin, Y. V. Kozhukhov, S. V. Kartashov, A. A. Lebedev, K. G. Malev, and Y. R. Mironov, “Design optimization opportunity of the end stage output plenum chamber of the centrifugal compressor for gas pumping unit,” AIP Conference Proceedings, p. 9, 2018.

Y. Sheoran, B. Bouldin, R. Hoover, and M. Matwey, “A centrifugal compressor operability correlation with combined total pressure and swirl distortion,” in Proceedings of the ASME Turbo Expo, 2017, vol. 1, pp. 1–11, doi: 10.1115/GT2017-63721.

F. Grapow and G. Liśkiewicz, “Compressor modeling using Greitzer model validated by pressure oscillations,” Trans. Inst. Fluid-Flow Mach., vol. 133, pp. 69--89, 2016.

N. Uddin and J. T. Gravdahl, “Bond graph modeling of centrifugal compression systems,” Simulation, vol. 91, no. 11, pp. 998–1013, 2015, doi: 10.1177/0037549715612124.

X. Zheng and A. Liu, “Phenomenon and mechanism of two-regime-surge in a centrifugal compressor,” J. Turbomach., vol. 137, no. 8, pp. 1–7, 2015, doi: 10.1115/1.4029547.

A. Hafaifa, B. Rachid, and G. Mouloud, “Modelling of surge phenomena in a centrifugal compressor: Experimental analysis for control,” Syst. Sci. Control Eng., vol. 2, no. 1, pp. 632–641, 2014, doi: 10.1080/21642583.2014.956269.

S. Y. Yoon, Z. Lin, C. Goyne, and P. E. Allaire, “An enhanced Greitzer compressor model including pipeline dynamics and surge,” in Journal of Vibration and Acoustics, Transactions of the ASME, 2011, vol. 133, no. 5, pp. 4731–4736, doi: 10.1115/1.4003937.

F. Synák, A. Kalašová, and J. Synák, “Air filter and selected vehicle characteristics,” Sustain., vol. 12, no. 22, pp. 1–19, 2020, doi: 10.3390/su12229326.

Y. Sheng, Q. Ren, L. Zhang, and Y. Wang, “Modeling and simulation of DEHS aerosol filtration by a three-dimensional knitted spacer air filter,” Build. Environ., vol. 186, no. October, p. 107365, 2020, doi: 10.1016/j.buildenv.2020.107365.

J. C. Laborde, L. D. E. L. Fabbro, V. M. Mocho, and L. Ricciardi, “Contribution To the Modelling of Industrial Pleated,” Comunicacion. p. 9, 2019.

M. Toma, C. Stan, and I. Fileru, “The restriction produced by the air filtration system versus the restriction produced by the air filter,” in MATEC Web of Conferences, 2018, vol. 178, p. 6, doi: 10.1051/matecconf/201817809002.

F. Landolsi, H. Jammoussi, and I. Makki, “Air filter diagnostics & prognostics in naturally aspired engines,” in 2017 IEEE International Conference on Prognostics and Health Management, ICPHM 2017, 2017, pp. 61–65, doi: 10.1109/ICPHM.2017.7998306.

S. R. Vishal, K. O. Prataprao, N. A. Pravin, and A. Rammohan, “Investigation of effect of air filter clogging on performance and emissions from engine,” 2017 International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2017, pp. 1–6, 2017.

L. M. Janutienė, Kandrotaitė and A. H. Habil, “Analysis and modelling of automotive air filter as a substitute for powercore item,” in International Scientific Journal, 2017, vol. V, no. 6, pp. 223–226.

Y. Wang et al., “Modeling Study of Metal Fiber Diesel Particulate Filter Performance,” SAE Technical Papers, no. April, p. 8, 2015.

A. M. Saleh and H. Vahedi Tafreshi, “A simple semi-numerical model for designing pleated air filters under dust loading,” Sep. Purif. Technol., vol. 137, pp. 94–108, 2014, doi: 10.1016/j.seppur.2014.09.029.

M. Ward, “Modeling Filter Bypass: Impact on Filter Efficiency,” ASHRAE Transactions, p. 11, 2010.

Most read articles by the same author(s)

OJS System - Metabiblioteca |