Characterization of biodiesel produced from castor oil (Ricinus communis), and determination of primary factors that interfere in its quality

Caracterización del biodiesel producido a partir del aceite de higuerilla (Ricinus communis), y determinación de los factores primarios que intervienen en su calidad

Main Article Content

Dally Esperanza Gáfaro-Álvarez
Andres Gilberto Rueda-Jaimes
Luisa Fernanda Medina-Caballero
Ana Milena Salazar-Beleño
Sandra Milena Montesino-Rincon
Leidy Andrea Carreño-Castaño
Abstract

Biodiesel has become one of the main options when it comes to satisfying the demand for energy resources and replacing or complementing the use of fossil fuels, thanks to its compatibility with fossil fuels, its renewable nature and its reduced environmental impact. Currently, to a large extent, biodiesel is produced from oils of vegetable origin, among which is castor seed oil. In the present investigation, regionally grown seed was used, in the municipality of Girón (Santander), to then carry out the complete process of extracting the oil and transforming it into fuel, seeking to determine their viability on a large scale through the characterization of the product obtained.

Keywords

Downloads

Download data is not yet available.

Article Details

References

S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, “Review of biodiesel composition, properties, and specifications”, Renewable Sustain. Energy Rev., vol. 16, no. 1, pp. 143–169, January 2012. DOI: 10.1016/j.rser.2011.07.143

G. Knothe and L. F. Razon, “Biodiesel fuels”, Prog. Energy Combustion Sci., vol. 58, pp. 36–59, January 2017. DOI: 10.1016/j.pecs.2016.08.001

A.K. Yusuf, P.A.P. Mamza, A.S. Ahmed and U. Agunwa, “Extraction and characterization of castor seed oil from wild Ricinus communis Linn”, Int. J. Sci. Environ. and Technol. Vol. 4, No. 5, pp. 1392 – 1404, October 2015. ISNN: 2278-3687

S. T. Keera, S. M. El Sabagh and A. R. Taman, “Castor oil biodiesel production and optimization”, Egyptian J. Petroleum, vol. 27, No. 4, pp. 979–984, December 2018. DOI: 10.1016/j.ejpe.2018.02.007

A. Torroba, “Atlas de los biocombustibles líquidos 2019-2020”, Instituto Interamericano de Cooperación para la Agricultura (IICA). 2020. URI: https://repositorio.iica.int/handle/11324/13974

S. N. Gebremariam and J. M. Marchetti, “Economics of biodiesel production: Review”, Energy Convers. Manage., vol. 168, pp. 74–84, July 2018. DOI: 10.1016/j.enconman.2018.05.002

B. Karmakar, S. H. Dhawane and G. Halder, “Optimization of biodiesel production from castor oil by Taguchi design”, J. Environmental Chem. Eng., vol. 6, No. 2, pp. 2684–2695, April 2018. DOI: 10.1016/j.jece.2018.04.019

K. J. Godri Pollitt, D. Chhan, K. Rais, K. Pan and J. S. Wallace, “Biodiesel fuels: A greener diesel? A review from a health perspective”, Sci. Total Environ., vol. 688, pp. 1036–1055, October 2019. DOI: 10.1016/j.scitotenv.2019.06.002

M. R. Monteiro, C. L. Kugelmeier, R. S. Pinheiro, M. O. Batalha and A. da Silva César, “Glycerol from biodiesel production: Technological paths for sustainability”, Renewable Sustain. Energy Rev., vol. 88, pp. 109–122, May 2018. DOI: 10.1016/j.rser.2018.02.019

Gómez, A., Murillo, J., & García, H. “Los géneros de Euphorbiaceae, Peraceae, Phyllanthaceae y Picrodendraceae del Departamento de Santander, Colombia” Universidad Nacional de Colombia, 2021. Disponible en: https://repositorio.unal.edu.co/handle/unal/83558

Mkhize, Z. I., Ngema, P. T., & Ramsuroop, S. “Effect of Temperature on Extraction of Castor Oil from Castor Seeds Using Potential Green Solvents”. Adv. in Chem. Eng. and Science, vol. 13(04), pp. 301–317. September 2023. DOI: 10.4236/aces.2023.134021

ICONTEC, “NTC 336: Grasas y aceites animales y vegetales. Método de la determinación de la densidad (Masa por volumen convencional)”, Normas Técnicas Colombianas, 2016. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-animales-y-vegetales-metodo-de-la-determinacion-de-la-densidad-masa-por-volumen-convencional-ntc336-2016.html

ICONTEC, “NTC 283: Grasas y aceites vegetales y animales. Determinación del índice de yodo”, Normas Técnicas Colombianas, 2019. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-vegetales-y-animales-determinacion-del-indice-de-yodo-ntc283-2019.html

ICONTEC, “NTC 218: Grasas y aceites animals y vegetales. Determinación del índice de acidez y de la acidez”, Normas Técnicas Colombianas, 2011. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-vegetales-y-animales-determinacion-del-indice-de-acidez-y-de-la-acidez-ntc218-2011.html

ICONTEC, “NTC 289: Grasas y aceites animales y vegetales. Determinación del índice de refracción”, Normas Técnicas Colombianas, 2019. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-animales-y-vegetales-determinacion-del-indice-de-refraccion-ntc289-2019.html

ICONTEC, “NTC 335: Grasas y aceites animales y vegetales. Determinación del índice de saponificación”, Normas Técnicas Colombianas, 2019. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-animales-y-vegetales-determinacion-del-indice-de-saponificacion-ntc335-2019.html

ICONTEC, “NTC 287: Grasas y aceites animales y vegetales. Determinación del contenido de humedad y materia volátil”, Normas Técnicas Colombianas, 2018. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-animales-y-vegetales-determinacion-del-contenido-de-humedad-y-materia-volatil-ntc287-2018.html

ICONTEC, “NTC 213: Grasas y aceites vegetales y animales. Determinación del punto de fusión (punto de deslizamiento)”, Normas Técnicas Colombianas, 2013. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-animales-y-vegetales-determinacion-del-contenido-de-humedad-y-materia-volatil-ntc287-2018.html

ICONTEC, “NTC 240: Grasas y aceites animales y vegetales. Determinación del contenido de impurezas insolubles.”, Normas Técnicas Colombianas, 2011. Disponible en: https://tienda.icontec.org/gp-grasas-y-aceites-animales-y-vegetales-determinacion-del-contenido-de-impurezas-insolubles-ntc240-2011.html

B. Chidambaranathan, S. Gopinath, R. Aravindraj, A. Devaraj, S. Gokula Krishnan and J. K. S. Jeevaananthan, “The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review”, Mater. Today: Proc., vol. 33, pp. 84–92, 2020. DOI: 10.1016/j.matpr.2020.03.205

M. J. A. Ferreira, M. F. S. Mota, R. G. B. Mariano and S. P. Freitas, “Evaluation of liquid-liquid extraction to reducing the acidity index of the tucuma (Astrocaryum vulgare Mart.) pulp oil”, Separation Purification Technol., vol. 257, p.p. 1-24, February 2021. DOI: 10.1016/j.seppur.2020.117894

H. Hadiyanto, A. P. Aini, W. Widayat, K. Kusmiyati, A. Budiman and A. Roesyadi, “Multi-Feedstocks Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil and Waste Cooking Oil”, Int. J. Renewable Energy Develop., vol. 9, No. 1, pp. 119–123, January 2020. DOI: 10.14710/ijred.9.1.119-123

ICONTEC, “NTC 5895:2021: Aceite crudo de palma con mayor contenido de ácido oleico. Requisitos.”, Normas Técnicas Colombianas, 2021. Disponible en: https://tienda.icontec.org/gp-aceite-crudo-de-palma-con-mayor-contenido-de-acido-oleico-requisitos-ntc5895-2021.html

C. Camargo. “Obtención de una base biolubricante a partir de aceites transesterificados de las grasas animales (sebos) provenientes de la industria bovina” Trabajo de grado para optar al título de Magíster en Ingeneiría Química. Universidad Industrial de Santander. 2022

A. T. Hoang and V. V. Pham, “Impact of Jatropha Oil on Engine Performance, Emission Characteristics, Deposit Formation, and Lubricating Oil Degradation”, Combustion Sci. Technol., vol. 191, No 3, pp. 504–519, August 2018. DOI: 10.1080/00102202.2018.1504292

E. González-Acosta, M. Martínez-Alonso, Y. Hernández-Díaz, Y. García-Díaz, y L. González-Rodríguez. “Propiedades fisicoquímicas y tribológicas del aceite de Jatropha curcas L. epoxidado”. Revista Cubana de Ciencias Químicas, vol. 30(1), p.p. 204-212. 2023. ISSN: 2224-6185

C. Muhammad, M. Mukhtar, M. Sabiu-Jibrin, M. Usman-Dabai, A. Sarkin-Baki, “Assessment of Low Temperature Refining Process of Castor Seed Oil for Biodiesel Production”, American Journal of Chemical and Biochemical Engineering, Vol. 3, No. 1, pp. 1-6. 2019.

ICONTEC, “NTC 5444:2020: Biodiesel para uso en motores diésel. Especificaciones.”, Normas Técnicas Colombianas, 2020. Disponible en: https://tienda.icontec.org/gp-biodiesel-para-uso-en-motores-diesel-especificaciones-ntc5444-2020.html

P. Montcho, L. Tchiakpe, G. Nonviho, D. Bothon, A. Sidohounde, C. Agbangnan-Dossa, D. Bessieres, A. Chrostowska and K. Sohounhloue, “Fatty acid profile and quality parameters of Ceiba pentandra (L.) seed oil: A potential source of biodiesel”, J. Pet. Technol. Altern. Fuels, Vol. 9, No. 3, pp. 14-19, 2018. DOI: 10.5897/JPTAF2018.0141

N. Kanthavelkumaran, S. Samuel, M. Daniel, S. Sanjeev, and S. Sujith. “Estimation of Performance and Emission of Castor Oil Biodiesel Blended With Sole Fuel in Diesel Engine”. International Journal of Precious Engineering Research and Applications (IJPERA), vol 7(1), p.p. 8–12. ISSN: 2456-2734

OJS System - Metabiblioteca |