Support tool for the calibration of numerical models of drainage systems in urban environments using digital image processing.

Herramienta de apoyo para la calibración de modelos numéricos de sistemas de drenaje en ambientes urbanos empleando procesamiento digital de imágenes.

Main Article Content

Diego Ivan Sanchez-Tapiero
César Augusto Peña-Cortés
Jarol Derley Ramón-Valencia
Abstract

Numerical modeling of drainage systems in urban environments physically based on surface runoff processes, such as flood zone analysis or hazard assessment, requires an adequate and accurate calibration of physical factors to simulate surface flows and thus achieve results that resemble reality. This calibration in most models is a difficult phase to achieve due to the scarcity of flow velocity and depth data measured in the field when flooding is occurring. The objective of this article is to present the advances in the use of digital image processing techniques for the semi-automatic estimation of flood levels in urban environments by means of a first phase implementation at laboratory scale. For the study, an experimental test model was used, consisting of a rectangular channel 250 centimeters (cm) long and a nominal section of 5.35 cm wide and 12 cm high, which is connected to a volumetric hydraulic bank for the permanent supply of water as an input condition to the model. The channel allowed the regulation of its longitudinal slope, simulating an urban road through which runoff water flows. The comparison of the manually measured data and the flow depth values achieved under the digital image processing technique was carried out, showing a good performance in the determination of the fluid heights for the different flow rates worked in the experimental model, with low values of the mean square error (MSE) and the root mean square error (RMSE), showing in each measurement lags of less than one millimeter (mm), with values between 0.1 and 0.6 mm. Finally, the results of the research showed that the technique presented is a non-invasive measurement method that, unlike other existing techniques, does not generate disturbances in the flow and is therefore very useful for flows with very small depths and high velocities.

Keywords

Downloads

Download data is not yet available.

Article Details

References

U. C. Nkwunonwo, M. Whitworth y B. Baily, “A review of the current status of flood modelling for urban flood risk management in the developing countries”, Scientific Afr., vol. 7, e00269, 2020. Doi: https://doi.org/10.1016/j.sciaf.2020.e00269 DOI: https://doi.org/10.1016/j.sciaf.2020.e00269

R. Berndtsson, P. Becker, A. Persson, H. Aspegren, S. Haghighatafshar, K. Jönsson, R. Larsson, S. Mobini, M. Mottaghi, J. Nilsson, J. Nordström, P. Pilesjö, M. Scholz, C. Sternudd, J. Sörensen y K. Tussupova. “Drivers of changing urban flood risk: A framework for action”, Journal of Environmental Management, vol. 240, pp. 47-56, 2019. Doi: https://doi.org/10.1016/j.jenvman.2019.03.094 DOI: https://doi.org/10.1016/j.jenvman.2019.03.094

C. Bonilla-Granados, A. Sánchez-Delgado y D. Sanchez-Tapiero. “Diseño de techos verdes y jardines verticales como sistemas urbanos de drenaje sostenible en edificaciones”, Respuestas, vol. 26, no. 3, pp.6-19, 2021. Doi: https://doi.org/10.22463/0122820X.3206 DOI: https://doi.org/10.22463/0122820X.3206

Y. Bai, N. Zhao, R. Zhang y X Zeng. “Storm Water Management of Low Impact Development in Urban Areas Based on SWMM”, Water, vol. 11, no. 33, pp. 1–16, 2019. Doi: https://doi.org/10.3390/w11010033 DOI: https://doi.org/10.3390/w11010033

E. D. Cubides y G. E. Santos. “Control de escorrentías urbanas mediante sistemas urbanos de drenaje sostenible (SUDS): Pozos/Zanjas de infiltración”, Entre Ciencia e Ingeniería, vol. 12, no. 24, pp. 32-42, 2017. Doi: https://doi.org/10.31908/19098367.3813 DOI: https://doi.org/10.31908/19098367.3813

Organización Meteorológica Mundial (OMM). “Mortalidad y pérdidas económicas debidas a fenómenos meteorológicos, climáticos e hidrológicos extremos (1970–2019)”, Ginebra, Suiza, 2021. Disponible en: https://library.wmo.int/?lvl=notice_display&id=22011#.Y3YVmnbMLIU

J. Sörensen y S. Mobini. “Pluvial, urban flood mechanisms and characteristics – Assessment based on insurance claims”, Journal of Hydrology, vol. 555, no. 207, pp. 51–67, 2017. Doi: https://doi.org/10.1016/j.jhidrol.2017.09.039. DOI: https://doi.org/10.1016/j.jhydrol.2017.09.039

G. Musolino, R. Ahmadian y R. A. Falconer. “Comparison of flood hazard assessment criteria for pedestrians with a refined mechanics-based method”, Journal of Hydrology, vol. 9, no. 100067, pp. 1-13, 2020. Doi: https://doi.org/10.1016/j.hydroa.2020.100067 DOI: https://doi.org/10.1016/j.hydroa.2020.100067

X. Wang, G. Kinsland, D. Poudel y A. Fenech. “Urban flood prediction under heavy precipitation”, J. Hydrol., vol. 577, no. 123984, pp. 1-21, 2019. Doi: https://doi.org/10.1016/j.jhydrol.2019.123984 DOI: https://doi.org/10.1016/j.jhydrol.2019.123984

J. Naves, J. Anta, J. Puertas, M. Regueiro-Picallo y J. Suárez, “Using a 2D shallow water model to assess Large-Scale Particle Image Velocimetry (LSPIV) and Structure from Motion (SfM) techniques in a street-scale urban drainage physical model”, J. Hydrol., vol. 575, pp. 54–65, 2019. Doi: https://doi.org/10.1016/j.jhydrol.2019.05.003 DOI: https://doi.org/10.1016/j.jhydrol.2019.05.003

V. Bellos, I. M. Kourtis, A. Moreno-Rodenas y V. A Tsihrintzis. “Quantifying Roughness Coefficient Uncertainty in Urban Flooding Simulations through a Simplified Methodology”, Water, vol. 9, no. 944, pp. 1–12, 2017. Doi: https://doi.org/10.3390/w9120944 DOI: https://doi.org/10.3390/w9120944

L. Vargas-Garay, O. Torres-Goyeneche y G. Carrillo-Soto. “Evaluation of SCS - unit hydrograph model to estimate peak flows in watersheds of Norte de Santander”, Respuestas, vol. 24, no. 1, pp. 6-16, 2019. Doi: https://doi.org/10.22463/0122820X.1743 DOI: https://doi.org/10.22463/0122820X.1743

B. Dong, J. Xia, M. Zhou, Q. Li, R. Ahmadian y R. A. Falconer. “Integrated modeling of 2D urban surface and 1D sewer hydrodynamic processes and flood risk assessment of people and vehicles”, Sci. Total Environ., vol. 827, pp. 1-13, 2022. Doi: https://doi.org/10.1016/j.scitotenv.2022.154098 DOI: https://doi.org/10.1016/j.scitotenv.2022.154098

L. Salvan, M. Abily, P. Gourbesville y J. Schoorens. “Drainage System and Detailed Urban Topography: Towards Operational 1D-2D Modelling for Stormwater Management”, Procedia Eng., vol. 154, pp. 890–897, 2016. Doi: https://doi.org/10.1016/j.proeng.2016.07.469. DOI: https://doi.org/10.1016/j.proeng.2016.07.469

C. Mikovits, W. Rauch y M. Kleidorfer. “Importance of scenario analysis in urban development for urban water infrastructure planning and management”, Computers, Environ. Urban Syst., vol. 68, pp. 9–16, 2018. Doi: https://doi.org/10.1016/j.compenvurbsys.2017.09.006. DOI: https://doi.org/10.1016/j.compenvurbsys.2017.09.006

Y. Hong, C. Bonhomme, M.-H. Le y G. Chebbo, “A new approach of monitoring and physically-based modelling to investigate urban wash-off process on a road catchment near Paris”, Water Res., vol. 102, no 2016, pp. 96–108, 2016. Doi: https://doi.org/10.1016/j.watres.2016.06.027 DOI: https://doi.org/10.1016/j.watres.2016.06.027

J. A. Rojas. “Análisis de incertidumbre y esquemas de calibración de un modelo conceptual de drenaje urbano en un ambiente de escasez de recursos”, Tesis M.S, Dep. Ing. Civil y Ambiental, Fac. Ing., Univ. de los Andes, Bogotá. 2011. Disponible: http://hdl.handle.net/1992/11559

F. Tauro, R. Piscopia y S. Grimaldi. “PTV-Stream: A simplified particle tracking velocimetry framework for stream surface flow monitoring”, CATENA, vol. 172, pp. 378–386, 2019. Doi: http://doi.org/10.1016/j.catena.2018.09.009. DOI: https://doi.org/10.1016/j.catena.2018.09.009

P. Allamano, A. Croci y F. Laio. “Toward the camera rain gauge”. Water Resources Res., vol. 51, pp. 1744 – 1757, 2015. Doi: http://10.1002/2014WR016298. DOI: https://doi.org/10.1002/2014WR016298

J.R.C.B. Abrantes, R.B. Moruzzi, A. Silveira y J.L.M.P. de Lima. “Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple-tracer approach”. J. Hydrol., vol. 557, pp. 362-377, 2018. Doi: http://10.1016/j.jhydrol.2017.12.048. DOI: https://doi.org/10.1016/j.jhydrol.2017.12.048

R. Ludovisi, F. Tauro, R. Salvati, S. Khoury, G. Scarascia Mugnozza y A. Harfouche. “UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought”, Front. Plant Sci., vol. 8, 2017. Doi: http://doi.org/10.3389/fpls.2017.01681. DOI: https://doi.org/10.3389/fpls.2017.01681

J. M. G. P. Isidoro, R. Martins, R. F. Carvalho y J. L. M. P. de Lima, “A high-frequency low-cost technique for measuring small-scale water level fluctuations using computer vision”, Measurement, vol. 180, pp. 109477, 2021. Doi: https://doi.org/10.1016/j.measurement.2021.109477 DOI: https://doi.org/10.1016/j.measurement.2021.109477

J. Kim, Y. Han y H. Hahn, “Embedded implementation of image-based water-level measurement system”, IET Comput. Vision, vol. 5, no 2, pp. 125-133, 2011. Doi: https://doi.org/10.1049/iet-cvi.2009.0144 DOI: https://doi.org/10.1049/iet-cvi.2009.0144

M. N. A. Beg et al., “A comparative study of manhole hydraulics using stereoscopic PIV and different RANS models”, Water Sci. Technol., vol. 2017, no. 1, pp. 87–98, 2018. Doi: https://doi.org/10.2166/wst.2018.089 DOI: https://doi.org/10.2166/wst.2018.089

D. Duda, J. Bém, V. Yanovych, P. Pavlíček y V. Uruba, “Secondary flow of second kind in a short channel observed by PIV”, Eur. J. Mechanics - B/Fluids, vol. 79, pp. 444–453, 2020. Doi: https://doi.org/10.1016/j.euromechflu.2019.10.005 DOI: https://doi.org/10.1016/j.euromechflu.2019.10.005

N. F. Guillén, A. Patalano, C. M. García y J. C. Bertoni, “Use of LSPIV in assessing urban flash flood vulnerability”, Nat. Hazards, vol. 87, pp. 383–394, 2017. Doi: https://doi.org/10.1007/s11069-017-2768-8 DOI: https://doi.org/10.1007/s11069-017-2768-8

R. Martins, M. Rubinato, G. Kesserwani, J. Leandro, S. Djordjević y J. D. Shucksmith, “On the Characteristics of Velocities Fields in the Vicinity of Manhole Inlet Grates During Flood Events”, Water Resour. Res., vol. 54, n.º 9, pp. 6408–6422, 2018. Doi: https://doi.org/10.1029/2018wr022782 DOI: https://doi.org/10.1029/2018WR022782

J. P. Leitão, S. Peña-Haro, B. Lüthi, A. Scheidegger y M. Moy de Vitry, “Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry”, J. Hydrol., vol. 565, pp. 791–804, 2018. Doi: https://doi.org/10.1016/j.jhydrol.2018.09.001 DOI: https://doi.org/10.1016/j.jhydrol.2018.09.001

Y. Hualong, Z. Leihong y Z. Dawei, “Non-imaging target recognition algorithm based on projection matrix and image Euclidean distance by computational ghost imaging”, Opt. & Laser Technol., vol. 137, pp. 106779, 2021. Doi: https://doi.org/10.1016/j.optlastec.2020.106779 DOI: https://doi.org/10.1016/j.optlastec.2020.106779

T. Arslan, “A Weighted Euclidean Distance based TOPSIS Method for Modeling Public Subjective Judgments”, Asia-Pacific J. Oper. Res., vol. 34, no 03, pp. 1750004, 2017. Doi: https://doi.org/10.1142/s021759591750004x DOI: https://doi.org/10.1142/S021759591750004X

Most read articles by the same author(s)

OJS System - Metabiblioteca |