Comportamiento de la Resistencia al desgaste erosivo de recubrimientos de alúmina

Comportamiento de la Resistencia al desgaste erosivo de recubrimientos de alúmina

Contenido principal del artículo

Alfonso Santos Jaimes
Zulma Yainell Ramírez Jaimes
Carlos Gerardo Cárdenas Arias
Emil Hernández Arroyo
Resumen

 

En este artículo se presentan los resultados de la investigación relacionada con el comportamiento experimental de recubrimientos de alúmina, obtenidos a partir de partículas de tamaño micrométrico y depositadas a través de un proceso de rociado térmico por llama, sobre un sustrato de acero inoxidable AISI 304, cuando están sometidos a desgate erosivo originado por cavitación a través de un aparato vibratorio. La metodología utilizada para alcanzar el objetivo propuesto consistió de cinco fases, en la primera se realizó una caracterización morfológica y química de los materiales utilizados; la segunda fue la adaptación del equipo de ultrasonido UIP1000hd a los requerimientos exigidos por la norma ASTM G32-16 (Método de pruebas estándar para erosión por cavitación usando aparatos vibratorios); posteriormente se ensayaron probetas de acero inoxidable AISI 304 para comprobar el funcionamiento del equipo utilizado, la validación del fenómeno de desgaste presente en las probetas se realizó a través de ensayos de microscopia electrónica de barrido con el fin de observar la evolución de la huella dejada sobre el espécimen; como cuarta fase se realizó la deposición de los recubrimientos de alúmina a través de un equipo de combustión oxiacetilénica convencional y una pistola Eutalloy 85 BX; por último se realizaron ensayos de microdureza y resistencia al desgaste erosivo a probetas de acero inoxidable AISI 304 sin y con recubrimientos de alúmina. Los resultados obtenidos permitieron validar el funcionamiento del equipo adaptado para la realización de los ensayos ya que el porcentaje de error promedio entre los datos experimentales y teóricos fue del 4,5% para el acero inoxidable AISI 304; respecto al comportamiento de los recubrimientos de alúmina se obtuvo una reducción del 26,23% de pérdida de material con respecto al acero inoxidable AISI 304, lo que representa una mejora significativa e incentiva su utilización cuando se tienen elementos mecánicos sometidos a desgaste erosivo originado por cavitación.

 

Palabras clave: Alúmina, Desgaste, Erosión, Recubrimientos.

 

Abstract


This article presents the results of the research related to the experimental behavior of alumina coatings obtained from micrometric size particles and deposited through a thermal spraying by flame process on an AISI 304 stainless steel substrate when it is subjected to erosive wear caused by cavitation through a vibratory apparatus. The methodology used to reach the proposed objective consisted of five phases in the first a morphological and chemical characterization of the materials used, was carried out; the second was the adaptation of UIP1000hd ultrasound equipment to the requirements demanded by the ASTM G32-16 standard (standard test method for erosion by cavitation using vibrating apparatus); afterwards, test pieces of AISI 304 stainless steel were tested to verify the performance of the equipment used, the validation of the wear phenomenon present in the specimens was carried out through scanning electron microscopy tests in order to observe the evolution of the footprint left over the specimen; as a fourth phase, the deposition of the alumina coatings was carried out through a conventional oxyacetylene combustion equipment and an Eutalloy 85 BX gun; finally micro-hardness and erosive wear resistance tests were carried out on AISI 304 stainless steel specimens without and with alumina coatings. The results obtained allowed to validate the operation of the adapted equipment for the performance of the tests since the percentage of average error between the experimental and theoretical data was of 4,5% for AISI 304 stainless steel; regarding the behavior of alumina coatings a 26,23% reduction of material loss was obtained with respect to the AISI 304 stainless steel which represents a significant improvement and encourages its use when mechanical elements are subjected to erosive wear caused by cavitation.

 

Keywords: Alumina, Wearing away, Erosion, Coatings.

 

Resumo


Este artigo apresenta os resultados da pesquisa relacionada ao comportamento experimental de revestimentos de alumina, obtidos a partir de partículas micrométricas e depositados através de um processo de chama térmica, sobre um substrato de aço inoxidável AISI 304, quando submetido a erosão erosiva causada por cavitação através de um aparelho vibratório. A metodologia utilizada para atingir o objetivo proposto consistiu de cinco fases, sendo que na primeira foi realizada uma caracterização morfológica e química dos materiais utilizados; o segundo foi a adaptação do equipamento de ultra-som UIP1000hd aos requisitos exigidos pela norma ASTM G32-16 (método de teste padrão para erosão por cavitação utilizando aparelhos vibratórios); subsequentemente, eles espécimes aço inoxidável AISI 304 foram testadas para a operação do equipamento utilizado, a validação de fenómeno de desgaste presente nas amostras foi realizada por meio de testes de microscopia electrónica de varrimento a fim de observar a evolução da marca deixada sobre o espécime; como uma quarta fase, a deposição dos revestimentos de alumina foi realizada através de equipamento de combustão de oxiacetileno convencional e uma pistola Eutalloy 85 BX; Finalmente, testes de microdureza e resistência à erosão foram realizados em amostras de aço inoxidável AISI 304 sem e com revestimentos de alumina. Os resultados obtidos permitiram validar a operação do equipamento adaptado para a realização dos ensaios, uma vez que a porcentagem de erro médio entre os dados experimentais e teóricos foi de 4,5% para o aço inoxidável AISI 304; sobre o comportamento dos revestimentos de alumina redução de 26,23% de perda de material em comparação com o aço inoxidável AISI 304 foi obtido, o que representa uma melhoria significativa e encoraja a utilização quando os elementos mecânicos são submetidos a erosiva desgaste causado pela cavitação.


Palavras-chave:  Alumina, Desgastando, Erosão, Revestimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Alfonso Santos Jaimes, Universidad Pontificia Bolivariana Seccional Bucaramanga

Msc. Ingeniería Mecánica.

Zulma Yainell Ramírez Jaimes, Unidades Tecnológicas de Santander.

Estudiante ingeniería, Joven investigador.

Carlos Gerardo Cárdenas Arias, Unidades Tecnológicas de Santander.

Msc. Educación.

Emil Hernández Arroyo, Universidad Pontificia Bolivariana Seccional Bucaramanga.

Msc. Controles Industriales.
Referencias

American Society for Testing and Materials. (2017). Standard test method for cavitation erosion using vibratory apparatus: ASTM G32-16. W. Conshohocken, United States: ASTM International.

K.H. Lo, F.T. Cheng, C.T. Kwok, et al., “Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder”, Surface and Coating Technology, vol. 165, no. 3, pp. 258-267, February 2003.

B. Saleh, A. Abouel-Kasem, A. Ezz El-Deen, et al., “Investigation of temperature effects on cavitation erosion behavior based on analysis of erosion particles”, Journal of Tribology, vol. 132, no. 4, (041601-1–041601-6), September 2010.

A. Krella, “An experimental parameter of cavitation erosion resistance for TiN coatings”, Wear, vol. 270, no. 3-4, pp. 252-257, January 2011.

A. Krella and A. Czyniewski, “Cavitation erosion resistance of nanocrystalline TiN coating deposited on stainless steel”, Wear, vol. 265, no. 7-8, pp. 963-970, September 2008.

M.C. Park, K.N. Kim, G.S. Shin, et al., “Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe-Cr-Ni-C alloys”, Wear, vol. 274-275, pp. 28-33, January 2012.

A.K. Krella, “Cavitation erosion resistance parameter of hard CAVD coatings”, Progress in Organics Coatings, vol. 70, no. 4, pp. 318-325, April 2011.

Y.G. Zheng, S.Z. Luo and W. Ke, “Cavitation erosion–corrosion behavior of CrMnB stainless overlay and 0Cr13Ni5Mo stainless steel in 0.5 M NaCl and 0.5 M HCl solutions”, Tribology International, vol. 41, no. 12, pp. 1181-1189, December 2008.

D.M. García-García, J. García-Antón, A. Igual-Muñoz, et al., “Effect of cavitation on the corrosion behavior of welded and non welded duplex stainless steel in aqueous LiBr solutions”, Corrosion Science, vol. 48, no. 9, pp. 2380-2405, September 2006.

W.M. Rainforth, “The wear behaviour of oxide ceramics-A Review”, Journal of Materials Science, vol. 39, no. 22, pp.6705-6721, November 2004.

L. Lara-Ortiz, F.F. Parada-Becerra, E.D. Valbuena-Niño, P.A. Tsygankov, V. Dugar-Zhabon and A. Plata-Gómez. “Temperature behaviour on deposition of the titanium nitride thin films on H13 steel by the electric arc discharge in vacuum”, Respuestas, vol. 22, no. 2, pp. 14-22, 2017.

F.G. Ferré, E. Bertarelli, A. Chiodoni, et al., “The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy”, Acta Materialia, vol. 61, no. 7, pp. 2662-2670, April 2013.

S. Hackemann, F. Flucht and W. Braue, “Creep investigations of alumina -based all- oxide ceramic matrix composites”, Composites Part A: Applied Science and Manufacturing, vol. 41, no. 12, pp. 1768-1776, December 2010.

G. Di Girolamo, A. Brentari, C. Blasi, et al., “Microstructure and mechanical properties of plasma sprayed alumina-based coatings”, Ceramics International, vol. 40, no. 8, pp. 12861-12867, September 2014.

O. Tazegul, F. Muhaffel, O. Meydanoglu, et al., “Wear and corrosion characteristics of novel alumina coatings produced by micro arc oxidation on AZ91D magnesium alloy”, Surface and Coatings Technology, vol. 258, pp. 168-173, November 2014.

M.A. Zavareh, A.A.D.M. Sarhan, B.B.A. Razak, et al., “Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications”, Ceramics International, vol. 40, no. 9A, pp. 14267-14277, November 2014.

Y.M. Franco, C. Ortiz, J.E. Rodríguez-Paéz y J.H. Bautista-Ruiz, “Obtención y Caracterización de recubrimientos de TiO2 por el método de complejo polimerizable (PECHINI)”, Respuestas, vol. 15, no. 1, pp. 25-32, 2010.

S. Canovic, B. Ljungberg and M. Halvarsson, “CVD TiC/alumina multilayer coatings grown on sapphire single crystals”, Micron, vol. 42, no. 8, pp. 808-818, December 2011.

E.E. Ashkihazi, V.S. Sedov, D.N. Sovyk, et al., “Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application”, Diamond & Related Materials, vol. 75, pp. 169-175, April 2017.

J.R. Davis. Handbook of Thermal Spray Technology-Introduction to thermal spray processing. United States of America: ASM International and Thermal Spray Society, 2004.

T.J. Steeper, W.L. Riggs ΙΙ, A.J. Rotolico, et al. “Thermal Spray Coatings: Properties, Processes and Applications” in Proceedings of the Fourth National Thermal Spray Conference, (Pittsburgh, Pennsylvania), pp. 13-14, ASM International, 1992.

L. Pawlowski. The Science and Engineering of Thermal Spray Coatings. Chichester, England: John Wiley & Sons Ltd, 2008.

S. Grainger and J. Blunt. Engineering Coatings - Design and Application. Cambridge: Abington Publishing, Second Edition, 1998.

J.L. Marulanda, A. Zapata y E. Isaza, “Protección contra la corrosión por medio del rociado térmico”, Scientia et Technica, vol. 34, pp. 237-242, Mayo 2007.

M. Gell, E.H. Jordan, Y.H. Sohn, et al., “Development and implementation of plasma sprayed nanostructured ceramic coatings”, Surface & Coatings Technology, vol. 146–147, pp. 48-54, October 2001.

E.H. Jordan, M. Gell, Y.H. Sohn, et al., “Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties”, Materials Science and Engineering: A, vol. 301, no. 1, pp. 80-89, March 2001.

Y. Lei, H. Chang, X. Guo, at al., “Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550 °C”, Ultrasonics – Sonochemistry, vol. 39, pp. 77-86, March 2017.

D.G. Li. J.D. Wang, D.R. Chen, et al., “The role of passive potential in ultrasonic cavitation erosion of titanium in 1 M HCl solution”, Ultrasonics – Sonochemistry, vol. 29, pp. 279-287, October 2015.

I. Mitelea, E. Dimian, I. Bordeasu, et al., “Ultrasonic cavitation erosion of gas nitrided Ti-6Al-4V alloys”, Ultrasonics – Sonochemistry, vol. 21, pp. 1544-1548, January 2014.

S. Zhang, S. Wang, C.L. Wu, et al., “Cavitation erosion and erosion-corrosion resistance of austenitic stainless steel by plasma transferred arc welding”, Engineering Failure Analysis, vol. 76, pp. 115-124, February 2017.

S. Jiang, H. Ding and J. Xu, “Cavitation erosion resistance of Sputter-Deposited Cr3Si film on Stainless Steel”, Journal of Tribology, vol. 139, no. 1, pp. 1-5, June 2016.

Sistema OJS - Metabiblioteca |