Técnicas para la elaboración de modelos de flujo de potencia óptimo reactivo en múltiples periodos de tiempo

Techniques for optimal reactive power flow modeling over multiple time periods

Contenido principal del artículo

Daniel Camilo Londoño-Tamayo
Walter Mauricio Villa-Acevedo
Jesús María López-Lezama
Resumen

El problema del despacho óptimo de potencia reactiva (DOPR) es un desafío clásico en sistemas de potencia, que busca optimizar la gestión de reactivos con el fin de minimizar pérdidas. Aunque ha sido ampliamente estudiado, hay pocos trabajos que abordan este problema desde una perspectiva multiperiodo. Uno de los principales desafíos es cómo modelar el DOPR en un horizonte de tiempo más amplio, teniendo en cuenta las restricciones de los dispositivos de compensación de potencia reactiva, como los transformadores y los capacitores, y minimizar el número de maniobras en los taps de los transformadores y otros dispositivos. Este artículo ofrece una revisión exhaustiva de las estrategias que se han utilizado en la literatura para modelar el DOPR multiperiodo (DOPRM), prestando especial atención a la limitación del número de maniobras en los dispositivos de compensación de potencia reactiva, como los capacitores, reactores y los taps de transformadores. Se pudo encontrar que muy pocos estudios consideran el modelado de restricciones intrahorarias y los límites de maniobras en reactores. Finalmente, este artículo de revisión tiene como objetivo servir de insumo a investigadores que estén interesados en proponer nuevos modelos para el DOPRM.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

S. M. Mohseni-Bonab y A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation”, IET Gener. Transm. Distrib., vol. 11, n.o 4, pp. 815-829, mar. 2017, doi: 10.1049/iet-gtd.2016.1545.

C.M. Huang, S.-J. Chen, Y.-C. Huang, y H.-T. Yang, “Comparative study of evolutionary computation methods for active-reactive power dispatch”, Transm. Distrib. IET Gener., vol. 6, n.o 7, pp. 636-645, jul. 2012, doi: 10.1049/iet-gtd.2011.0559.

M. Ettappan, V. Vimala, S. Ramesh, y V. Thiruppath “Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm”, Microprocess. Microsyst., vol. 76, p. 103085, jul. 2020, doi: 10.1016/j.micpro.2020.103085.

P. Subbaraj y P. N. Rajnarayanan, “Optimal reactive power dispatch using self-adaptive real coded genetic algorithm”, Electr. Power Syst. Res., vol. 79, n.o 2, pp. 374-381, feb. 2009, doi: 10.1016/j.epsr.2008.07.008.

H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, y Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment”, en 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), Columbus, OH, USA, 2001, vol. 2, p. 498, doi: 10.1109/PESW.2001.916897.

D. Devaraj y J. P. Roselyn, “Genetic algorithm based reactive power dispatch for voltage stability improvement”, Int. J. Electr. Power Energy Syst., vol. 32, n.o 10, pp. 1151-1156, dic. 2010, doi: 10.1016/j.ijepes.2010.06.014.

H. Xiong, H. Cheng, y H. Li, “Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm”, Energy Convers. Manag., vol. 49, n.o 5, pp. 1175-1181, may 2008, doi: 10.1016/j.enconman.2007.09.005.

B. Zhao, C. X. Guo, y Y. J. Cao, “A multiagent-based particle swarm optimization approach for optimal reactive power dispatch”, IEEE Trans. Power Syst., vol. 20, n.o 2, pp. 1070-1078, may 2005, doi: 10.1109/TPWRS.2005.846064.

C. Dai, W. Chen, Y. Zhu, y X. Zhang, “Reactive power dispatch considering voltage stability with seeker optimization algorithm”, Electr. Power Syst. Res., vol. 79, n.o 10, pp. 1462-1471, oct. 2009, doi: 10.1016/j.epsr.2009.04.020.

A. H. Khazali y M. Kalantar, “Optimal reactive power dispatch based on harmony search algorithm”, Int. J. Electr. Power Energy Syst., vol. 33, n.o 3, pp. 684-692, mar. 2011, doi: 10.1016/j.ijepes.2010.11.018.

A. A. A. El Ela, M. A. Abido, y S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch”, Electr. Power Syst. Res., vol. 81, n.o 2, pp. 458-464, feb. 2011, doi: 10.1016/j.epsr.2010.10.005.

A. Rabiee and M. Parniani, "Optimal reactive power dispatch using the concept of dynamic VAR source value," 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-5, doi: 10.1109/PES.2009.5275726.

A. Rabiee, M. Vanouni, y M. Parniani, “Optimal reactive power dispatch for improving voltage stability margin using a local voltage stability index”, Energy Convers. Manag., vol. 59, pp. 66-73, jul. 2012, doi: 10.1016/j.enconman.2012.02.017.

S. Duman, Y. Sönmez, U. Güvenc̈, y N. Yörükeren, “Optimal reactive power dispatch using a gravitational search algorithm”, Transm. Distrib. IET Gener., vol. 6, n.o 6, pp. 563-576, jun. 2012, doi: 10.1049/iet-gtd.2011.0681.

B. Mandal y P. K. Roy, “Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization”, Int. J. Electr. Power Energy Syst., vol. 53, pp. 123-134, dic. 2013, doi: 10.1016/j.ijepes.2013.04.011.

V. Ajjarapu, J. Carr, y R. S. Ramshaw, “Security constrained optimal reactive power dispatch”, Electr. Power Syst. Res., vol. 16, n.o 3, pp. 209-216, may 1989, doi: 10.1016/0378-7796(89)90013-8.

K. Rayudu, G. Yesuratnam and A. Jayalaxmi, "Improving voltage stability by optimal reactive power dispatch based on genetic algorithm and linear programming technique," 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 1357-1362, doi: 10.1109/ICEEOT.2016.7754904.

V. H. Quintana y M. Santos-Nieto, “Reactive-power dispatch by successive quadratic programming”, IEEE Trans. Energy Convers., vol. 4, n.o 3, pp. 425-435, sep. 1989, doi: 10.1109/60.43245.

J. Radosavljevic and M. Jevtic, “Solution of Optimal Reactive Power Dispatch by a Hybrid GSA-SQP Algorithm”, ELEKTRON ELEKTROTECH, vol. 22, no. 3, pp. 3 - 6, Jun. 2016, doi: 10.5755/j01.eie.22.3.15306.

M. Granada, Marcos J. Rider, J.R.S. Mantovani, y M. Shahidehpour, “A decentralized approach for optimal reactive power dispatch using a Lagrangian decomposition method”, Electr. Power Syst. Res., vol. 89, pp. 148-156, ago. 2012, doi: 10.1016/j.epsr.2012.02.015.

A. Murray, A. Engelmann, V. Hagenmeyer, y T. Faulwasser, “Hierarchical Distributed Mixed-Integer Optimization for Reactive Power Dispatch”, IFAC-Pap., vol. 51, n.o 28, pp. 368-373, ene. 2018, doi: 10.1016/j.ifacol.2018.11.730.

B. Venkatesh, M. K. George, y H. B. Gooi, “Fuzzy OPF incorporating UPFC”, Transm. Distrib. IEE Proc. - Gener., vol. 151, n.o 5, pp. 625-629, sep. 2004, doi: 10.1049/ip-gtd:20040611.

Wei Yan, Shuai Lu, y D. C. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique”, IEEE Trans. Power Syst., vol. 19, n.o 2, pp. 913-918, may 2004, doi: 10.1109/TPWRS.2004.826716.

R. P. Singh, V. Mukherjee, y S. P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers”, Appl. Soft Comput., vol. 29, pp. 298-309, abr. 2015, doi: 10.1016/j.asoc.2015.01.006.

U. Can y B. Alatas, "Physics Based Metaheuristic Algorithms for Global Optimization", Am. J. Inf. Sci. Comput. Eng., vol. 1, n.° 3, sep. 2015.

B. Bhattacharya, K. K. Mandal and N. Chakraborty, "Real and reactive power optimization using hybrid cultural algorithm," Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), 2014, pp. 441-445, doi: 10.1109/CIEC.2014.6959127.

K.LENIN, B.RAVINDRANATH REDDY, y M.SURYA KALAVATHI, «An Artificial Immune System Algorithm for Solving Optimal Reactive Power Dispatch Problem», Conf. Adv. Commun. Control Syst. 2013( CAC2S 2013), pp. 51-59, 2013.

L. Zhang, W. Tang, J. Liang, P. Cong, y Y. Cai, “Coordinated Day-Ahead Reactive Power Dispatch in Distribution Network Based on Real Power Forecast Errors”, IEEE Trans. Power Syst., vol. 31, n.o 3, pp. 2472-2480, may 2016, doi: 10.1109/TPWRS.2015.2466435.

N. Yang, C. W. Yu, F. Wen, y C. Y. Chung, “An investigation of reactive power planning based on chance constrained programming”, Int. J. Electr. Power Energy Syst., vol. 29, n.o 9, pp. 650-656, nov. 2007, doi: 10.1016/j.ijepes.2006.09.008.

J. Zhao, L. Ju, Z. Dai, y G. Chen, “Voltage stability constrained dynamic optimal reactive power flow based on branch-bound and primal–dual interior point method”, Int. J. Electr. Power Energy Syst., vol. 73, pp. 601-607, dic. 2015, doi: 10.1016/j.ijepes.2015.05.038.

J. Huang, Z. Li, y Q. H. Wu, “Fully decentralized multiarea reactive power optimization considering practical regulation constraints of devices”, Int. J. Electr. Power Energy Syst., vol. 105, pp. 351-364, feb. 2019, doi: 10.1016/j.ijepes.2018.08.045.

J. López, J. Contreras, y J. R. S. Mantovani, “Reactive power planning under conditional-value-at-risk assessment using chance-constrained optimisation”, Transm. Distrib. IET Gener., vol. 9, n.o 3, pp. 231-240, 2015, doi: 10.1049/iet-gtd.2014.0224.

A. M. Theologi, M. Ndreko, J. L. Rueda, M. A. M. M. van der Meijden, y F. González-Longatt, “Optimal management of reactive power sources in far-offshore wind power plants”, en 2017 IEEE Manchester PowerTech, jun. 2017, pp. 1-6, doi: 10.1109/PTC.2017.7980833.

D. Gutierrez Rojas, J. Lopez Lezama, y W. Villa, “Metaheuristic Techniques Applied to the Optimal Reactive Power Dispatch: a Review”, IEEE Lat. Am. Trans., vol. 14, n.o 5, pp. 2253-2263, may 2016, doi: 10.1109/TLA.2016.7530421.

M. Foata, C. Rajotte, y A. Jolicoeur, "On-Load Tap Changer Reliability And Maintenance Strategy", in Proceedings CIGRE Session 2006, France, 2006.

D. F. Peelo, B. R. Sunga, y P. P. Smeets, "Stresses on Shunt Reactors due to Switching", in Proceedings CIGRE Session 2008, Paris, 2008.

Working Group B5.37, "Protection, Monitoring and Control of Shunt Reactors", Cigre, Paris, France, Technical Brochures 546, ago. 2013.

J. F. Reid, "Controlled Switching Issues and the National Grid Company’s Experience of Switching Shunt Capacitor Banks and Shunt Reactors", in Proceedings CIGRE Session 1998, Paris, France, 1998.

T. Malakar, A. Rajan, K. Jeevan, y P. Dhar, “A day ahead price sensitive reactive power dispatch with minimum control”, Int. J. Electr. Power Energy Syst., vol. 81, pp. 427-443, oct. 2016, doi: 10.1016/j.ijepes.2016.02.035.

Mahzouni-Sani, Mahdi; Hamidi, Amir; Nazarpour, Daryoush; Golshannavaz, Sajjad: “Multi-objective linearised optimal reactive power dispatch of wind-integrated transmission networks”, IET Generation, Transmission & Distribution, 2019, 13, (13), p. 2686-2696, doi: 10.1049/iet-gtd.2018.6669.

Y. P. Agalgaonkar, B. C. Pal, y R. A. Jabr, “Distribution Voltage Control Considering the Impact of PV Generation on Tap Changers and Autonomous Regulators”, IEEE Trans. Power Syst., vol. 29, n.o 1, pp. 182-192, ene. 2014, doi: 10.1109/TPWRS.2013.2279721.

A. Rabiee y M. Parniani, “Voltage security constrained multi-period optimal reactive power flow using benders and optimality condition decompositions”, IEEE Trans. Power Syst., vol. 28, n.o 2, pp. 696-708, may 2013, doi: 10.1109/TPWRS.2012.2211085.

Q. Nguyen, K. -W. Lao, S. Santoso and P. Chirapongsananurak, "A Hierarchical Volt-var Optimization with Discrete Variables in Unbalanced Distribution Systems," 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973834.

Yong-jun Zhang y Zhen Ren, “Optimal reactive power dispatch considering costs of adjusting the control devices”, IEEE Trans. Power Syst., vol. 20, n.o 3, pp. 1349-1356, ago. 2005, doi: 10.1109/TPWRS.2005.851920.

Ruey-Hsun Liang y Yung-Shuen Wang, “Fuzzy-based reactive power and voltage control in a distribution system”, IEEE Trans. Power Deliv., vol. 18, n.o 2, pp. 610-618, abr. 2003, doi: 10.1109/TPWRD.2003.809740.

Feng-Chang Lu y Yuan-Yih Hsu, “Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation”, IEEE Trans. Power Syst., vol. 12, n.o 2, pp. 681-688, may 1997, doi: 10.1109/59.589651.

Y.-J. Kim, S.-J. Ahn, P.-I. Hwang, G.-C. Pyo, y S.-I. Moon, “Coordinated Control of a DG and Voltage Control Devices Using a Dynamic Programming Algorithm”, IEEE Trans. Power Syst., vol. 28, n.o 1, pp. 42-51, feb. 2013, doi: 10.1109/TPWRS.2012.2188819.

Yuan-Yih Hsu y Chien-Chuen Yang, “A hybrid artificial neural network-dynamic programming approach for feeder capacitor scheduling”, IEEE Trans. Power Syst., vol. 9, n.o 2, pp. 1069-1075, may 1994, doi: 10.1109/59.317624.

Z. Hu, X. Wang, H. Chen, y G. A. Taylor, “Volt/VAr control in distribution systems using a time-interval based approach”, Transm. Distrib. IEE Proc. - Gener., vol. 150, n.o 5, pp. 548-554, sep. 2003, doi: 10.1049/ip-gtd:20030562.

Ruey-Hsun Liang y Chen-Kuo Cheng, “Dispatch of main transformer ULTC and capacitors in a distribution system”, IEEE Trans. Power Deliv., vol. 16, n.o 4, pp. 625-630, oct. 2001, doi: 10.1109/61.956748.

M. B. Liu, C. A. Canizares, y W. Huang, “Reactive Power and Voltage Control in Distribution Systems With Limited Switching Operations”, IEEE Trans. Power Syst., vol. 24, n.o 2, pp. 889-899, may 2009, doi: 10.1109/TPWRS.2009.2016362.

H. Ahmadi, J. R. Martí, y H. W. Dommel, “A Framework for Volt-VAR Optimization in Distribution Systems”, IEEE Trans. Smart Grid, vol. 6, n.o 3, pp. 1473-1483, may 2015, doi: 10.1109/TSG.2014.2374613.

Youman Deng, Xiaojuan Ren, Changcheng Zhao, y Dapu Zhao, “A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems”, IEEE Trans. Power Syst., vol. 17, n.o 4, pp. 1068-1072, nov. 2002, doi: 10.1109/TPWRS.2002.804973.

Y.-Y. Hsu y H.-C. Kuo, “Dispatch of capacitors on distribution system using dynamic programming”, Transm. Distrib. IEE Proc. C - Gener., vol. 140, n.o 6, pp. 433-438, nov. 1993, doi: 10.1049/ip-c.1993.0063.

C. F. Ionescu, C. Bulac, F. Capitanescu and L. Wehenkel, "Multi-period power loss optimization with limited number of switching actions for enhanced continuous power supply," 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 34-38, doi: 10.1109/ICHQP.2014.6842830.

Sistema OJS - Metabiblioteca |