Metodologías en proyectos de bioclimática y el eco-diseño para la mejora de las condiciones de confort térmico en habitats
Methodologies for Bioclimatic and Eco-Design Projects to Improve Thermal Comfort Conditions in Habitats
Contenido principal del artículo
Este estudio explora cómo los principios bioclimáticos y el eco diseño pueden mejorar el confort térmico en los entornos habitables. El objetivo es establecer un marco que utilice los recursos naturales en el diseño de productos, reduciendo la dependencia de sistemas artificiales. La metodología incluyó una revisión bibliográfica, un análisis de casos prácticos y simulaciones climáticas. Los resultados mostraron que los productos diseñados con estos principios mejoran el confort térmico y minimizan el impacto ambiental, proponiendo un proceso de diseño innovador. Las conclusiones destacan el potencial del diseño bioclimático y ecológico para abordar los problemas térmicos, recomendando su adopción en productos y arquitectura, al tiempo que sientan las bases para futuras investigaciones en diseño sostenible.
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
Indexado en
- Sociedad académica
- Universidad Francisco de Paula Santander
- Editorial
- Universidad Francisco de Paula Santander
Detalles del artículo
J. Guillén de Romero, J. Calle García, A. M. Gavidia Pacheco, y A. G. Vélez Santana, "Desarrollo sostenible: Desde la mirada de preservación del medio ambiente colombiano," Rev. Cienc. Soc. (Ve), vol. XXVI, no. 4, pp. 293-307, 2020.
L. Merino Pérez, "Apropiación, instituciones y gestión sostenible de la biodiversidad," Gaceta Ecológica, no. 78, pp. 11-27, 2006. [Consulta: 28 de agosto de 2024]. Disponible en: https://www.redalyc.org/articulo.oa?id=53907802
E. Hernández, "Ambiente, gestión ambiental. Avances y retrocesos del ambiente y desarrollo sustentable en Venezuela," Provincia, no. 34, pp. 97-116, 2015. [Consulta: 28 de agosto de 2024]. Disponible en: https://www.redalyc.org/articulo.oa?id=55544729006
P. Ortiz Méndez, Arquitectura, Confort y Cambio Climático. Xalapa, Veracruz: Universidad Veracruzana, Programa de Educación Continua y a Distancia, 2023. [En línea]. Disponible en: https://www.uv.mx/peccuv/files/2023/10/Arquitectura-Confort-y-Cambio-Climatico.pdf.
T. Koroglu and O. S. Sogut, "Advanced exergoeconomic analysis of organic rankine cycle waste heat recovery system of a marine power plant," International Journal of Thermodynamics, vol. 20, no. 3, pp. 140–151, 2017.
H. Nguyen, G. Onofrei, Y. Yang, K. Nguyen, M. Akbari, and H. Pham, "Green certification practices and process innovation alignment: diminishing point and catching up in nation's economic development," Business Process Management Journal, vol. 30, no. 2, pp. 463-484, Apr. 2024.
C. J. C. Jabbour, et al., "Green product development and performance of Brazilian firms: measuring the role of human resources and environmental sustainability," Journal of Cleaner Production, vol. 87, pp. 277-284, Jan. 2015.
P. H. Driessen, et al., "Green new product development: the pivotal role of product greenness," IEEE Transactions on Engineering Management, vol. 60, no. 2, pp. 315-326, May 2013.
Z. Gao, et al., "A green supply chain model considering eco-label policy: impacts on product greenness and pricing," Journal of Cleaner Production, vol. 275, pp. 124-137, Nov. 2023.
W. Liu, et al., "Green Product Development and Order Strategies for Retailers: A Competitive Analysis," Sustainability, vol. 15, no. 3, pp. 789-801, Feb. 2023.
M. Schäfer and M. Löwer, "Ecodesign—A Review of Reviews," Sustainability, vol. 13, no. 1, pp. 1-28, 2021, doi: 10.3390/su13010315.
F. Mathieux, N. Rebitzer, S. Ferrendier, C. Simon, and D. Froelich, "Ecodesign in the European electronics industry—An analysis of the current practices based on cases from the ECOLIFE project," Journal of Cleaner Production, vol. 9, no. 3, pp. 179-188, 2001, doi: 10.1016/S0959-6526(00)00063-8
W. Wimmer, R. Züst, and K. M. Lee, Ecodesign Implementation: A Systematic Guidance on Integrating Environmental Considerations into Product Development, Springer, 2004. doi: 10.1007/978-1-4020-3071-0.
W. Dewulf, A. Duflou, J. Blanchart, S. Peeters, and J. Rios, "Eco-design evaluation of lightweight materials in automotive applications," Sustainable Manufacturing, vol. 15, no. 2, pp. 87-97, 2009. doi: 10.1007/s11469-009-9135-1.
P. Despeisse, M. Baumers, P. Brown, A. Charnley, A. Ford, and S. Garmulewicz, "Unlocking value for a circular economy through 3D printing: A research agenda," Technological Forecasting and Social Change, vol. 115, pp. 75-84, 2017. doi: 10.1016/j.techfore.2016.09.021.
V. Olgyay, Design with Climate: Bioclimatic Approach to Architectural Regionalism, Princeton, NJ: Princeton University Press, 1963.
H. Hens, Building Physics: Heat, Air and Moisture: Fundamentals and Engineering Methods with Examples and Exercises, 3rd ed., John Wiley & Sons, 2007.
X. Wang, H. K. Chan, and L. White, "A comprehensive decision support model for the evaluation of eco-designs," Journal of the Operational Research Society, vol. 65, no. 6, pp. 855-865, 2014, doi: 10.1057/jors.2013.11.
S. G. Brundtland, "Our Common Future: Report of the World Commission on Environment and Development," Oxford University Press, 1987. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
1 N. M. Bocken, M. Farracho, R. Bosworth, and R. Kemp, "The role of eco-innovation in the circular economy: An empirical study of sustainable business practices," Journal of Cleaner Production, vol. 97, pp. 209-224, Oct. 2014. https://www.sciencedirect.com/science/article/abs/pii/S0959652614006302
Dempster, A. P. and L. S. Shafer, "Upper and Lower Probabilities Induced by a Multivalued Mapping," Annals of Mathematical Statistics, vol. 38, no. 2, pp. 325-339, Apr. 1967. Enlace
Yager, R. R., "On the Dempster-Shafer Theory of Evidence and the Bayesian Approach," IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 1, pp. 108-114, Jan./Feb. 1989.
Gómez, E. and D. Castillo, "Aplicación del método AHP en la priorización de proyectos en el área de la construcción," Revista de Ciencias Sociales, vol. 23, no. 2, pp. 45-58, 2017.
Mendoza, G. A. and J. E. Pérez, "Uso del Proceso de Jerarquía Analítica (AHP) para la selección de tecnologías limpias en empresas," Ciencia e Ingeniería Neogranadina, vol. 29, no. 1, pp. 25-34, 2019.
Aranda, A. and E. García, "Aplicación del Análisis de Ciclo de Vida en la evaluación ambiental de productos: un enfoque para la industria alimentaria," Revista de Ciencias Ambientales, vol. 14, no. 2, pp. 97-112, 2020.
Bermúdez, J. A. and M. López, "Metodología de Análisis de Ciclo de Vida (LCA) aplicada a la gestión de residuos sólidos urbanos," Revista Latinoamericana de Recursos Naturales, vol. 22, no. 1, pp. 45-60, 2018.
Gómez, A. and R. Martínez, "Métodos de Evaluación de Impacto Ambiental en proyectos de infraestructura urbana," Revista de Ingeniería y Tecnología, vol. 12, no. 3, pp. 67-82, 2021. DOI: 10.1016/j.engtech.2021.03.005.
Gómez, A. and R. Martínez, "Métodos de Evaluación de Impacto Ambiental en proyectos de infraestructura urbana," Revista de Ingeniería y Tecnología, vol. 12, no. 3, pp. 67-82, 2021. DOI: 10.1016/j.engtech.2021.03.005.