Detection of license plates by means of a cascade classifier model based on Python language

Detección de placas vehiculares mediante modelo de clasificador en cascada basado en lenguaje Python

Main Article Content

Carlos Vicente Niño-Rondón
Diego Andrés Castellano-Carvajal
Sergio Alexander Castro-Casadiego
Byron Medina-Delgado
Dinael Guevara-Ibarra
Abstract

The detection of vehicle plates using machine learning techniques improves the processes of tracking, tracing and security. The development of a cascade classifier model for license plate detection is presented, using Python, OpenCV and Cascade Trainer GUI tools, based on open source. The images used for the processing were captured by a Raspberry Pi camera connected to the embedded plate, in several points of the central area of the frontier city of Cúcuta, Colombia, then sent to a personal computer and redirected through geometric transformations; and to guarantee the high performance of the classification system, data enhancement processes are applied, going from 245 to 1867 images for the training of the cascade detector. The classification model took 17.4 minutes to create, and was tested with images and videos in real environments in the city of Cúcuta, achieving the detection of Colombian and Venezuelan license plates with an effectiveness of 90.26 %.

Keywords

Downloads

Download data is not yet available.

Article Details

References

A. Menon and B. Omman, “Detection and Recognition of Multiple License Plate from Still Images,” in 2018 International Conference on Circuits and Systems in Digital Enterprise Technology, ICCSDET 2018, 2018, pp. 1–5. DOI: 10.1109/ICCSDET.2018.8821138

A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” in 2019 International Interdisciplinary PhD Workshop, IIPhDW 2019, 2019, pp. 117–122. DOI: 10.1109/IIPHDW.2018.8388338

A. M. Davis, C. Arunvinodh, and N. P. Arathy Menon, “Automatic license plate detection using vertical edge detection method,” in ICIIECS 2015 - 2015 IEEE International Conference on Innovations in Information, Embedded and Communication Systems, 2015. DOI: 10.1109/ICIIECS.2015.7193073

C. A. Castillo Benavides, L. F. García, N. D. Duque Méndez, and J. H. Estrada Estrada, “Mouse for People With Physical Disabilities in Virtual Educational Contexts,” Ing. e Innovación, vol. 3, no. 1, pp. 82–89, 2015. DOI: 10.21897/23460466.796

C. H. Setjo, B. Achmad, and Faridah, “Thermal image human detection using Haar-cascade classifier,” in Proceedings - 2017 7th International Annual Engineering Seminar, InAES 2017, 2017. DOI: 10.1109/INAES.2017.8068554

Cistian andrés Tasiguano, “Desarrollo de algoritmos de reconocimiento de placas de vehículos,” Quito Epn, no. May, pp. 5–10, 2011

C. M. Budoya, M. Kissaka, and J. Mtebe, “Instructional Design Enabled Agile Method Using ADDIE Model and Feature Driven Development Process.,” Int. J. Educ. Dev. Using Inf. Commun. Technol., vol. 15, no. 1, pp. 35–54, 2019

C. Padilla, “Objects Detection using haarscascade algorithms and OpenCV,” Universidad de Camagüey Ignacio Agramonte y Loynaz, 2016

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, pp. 1–48, 2019. DOI: 10.1186/s40537- 019-0197-0

C. V. Niño-Rondón, S. A. Castro-Casadiego, B. Medina-Delgado, D. Guevara-Ibarra, J. J. Ramírez-Mateus, and K. C. Puerto-López, “Comparación multiplataforma de técnicas basadas en visión artificial para detección de personas en espacios abiertos,” Investig. e Innovación en Ing., vol. 9, no. 1, pp. 22–33, 2021. DOI: 10.17081/invinno.9.1.3965

C. V. Niño-Rondón, S. A. Castro-Casadiego, B. Medina-Delgado, D. Guevara, and J. Gómez-Rojas, “Procesamiento a imágenes de video para verificación de distanciamiento social durante la pandemia de la COVID-19,” Logos Cienc. Tecnol., vol. 13, no. 1, pp. 116–127, 2021. DOI: 10.22335/rlct.v13i1.1305

D. I. Gómez-Bedoya and R. Castrillón, “Reconocimiento automático de ganado bovino a partir de imágenes aéreas,” III Congr. Int. en Intel. Ambient. Ing. Softw. y Salud Electrónica y Móvil, pp. 32–39, 2019

D. L. Siqueira and A. Manso Correa MacHado, “People Detection and Tracking in Low Frame-rate Dynamic Scenes,” IEEE Lat. Am. Trans., vol. 14, no. 4, pp. 1966–1971, 2016. DOI: 10.1109/TLA.2016.7483541

D. S. Aldás Salazar, S. M. Collantes Vaca, and J. P. Reyes Vásquez, “Procesamiento de imágenes con visión artificial para el reconocimiento de placas vehiculares,” Sathiri, no. 11, p. 133, 2016. DOI: 10.32645/13906925.15

D. Villamarin, “Estado del Arte, Herramientas y Aplicaciones para Transformaciones geométricas 3D.,” in X Congreso de Ciencia y Tecnología ESPE 2015, 2015, no. June 2015, pp. 1–6. DOI: 10.24133/cctespe.v10i1.51

E. Alegre, G. Pajares, and A. de la Escalera, Conceptos y métodos en visión por computador, vol. 1. Madrid, España, 2016. ISBN: 978-84-608-8933-5

E. Plebani, L. Celona, D. Pau, P. Karimi, and M. Marcon, “Training an object detector using only positive samples,” in 2015 IEEE 1st International Workshop on Consumer Electronics - Novi Sad, CE WS 2015, 2017, no. January 2018, pp. 1–4. DOI: 10.1109/CEWS.2015.7867139

F. Gao, Q. Xu, and B. Li, “Aircraft detection from VHR images based on circle-frequency filter and multilevel features,” Sci. World J., vol. 2013, no. March 2015, 2013. DOI: 10.1155/2013/917928

F. Ramazankhani and M. Yazdian Dehkordi, “Iranian License Plate Detection using Cascade Classifier,” in ICEE 2019 - 27th Iranian Conference on Electrical Engineering, 2019, pp. 1860–1863. DOI: 10.1109/IranianCEE.2019.8786468

G. F. Contreras Contreras, B. Medina Delgado, D. G. Ibarra, C. Leite De Castro, and B. R. Acevedo Jaimes, “Cluster CV2: A Computer Vision Approach to Spatial Identification of Data Clusters,” 2019 22nd Symp. Image, Signal Process. Artif. Vision, STSIVA 2019 - Conf. Proc., vol. 2, no. 1, pp. 1–5, 2019. DOI: 10.1109/STSIVA.2019.8730239

J. A. Taquía-Gutiérrez, “El procesamiento de imágenes y su potencial aplicación en empresas con estrategia digital,” Interfases, vol. 0, no. 010, p. 11, 2017. DOI: 10.26439/interfases2017.n10.1767

J. Celis et al., “Voice processing with Internet of Things for a home automation system,” in Proceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018, 2018, pp. 0–3. DOI: 10.1109/INTERCON.2018.8526420

J. Hernández Santiago, J. S. Ruiz Castilla, C. H. Moreno Montiel, and B. Hernández Santiago, “Segmentación de placas vehiculares usando Haar-AdaBoost y Clustering,” Res. Comput. Sci., vol. 147, no. 5, pp. 269–279, 2018. DOI: 10.13053/rcs-147-5-20

J. Navacerrada, “Sistema de detección de matrículas con Open CV,” Universidad Politécnica de Madrid, 2017

K. Selvaraj, A. A. Fathima, and V. Vaidehi, “Multi-class object detection by part based approach,” in International Conference on Recent Trends in Information Technology, ICRTIT 2012, 2012, pp. 114–118. DOI: 10.1109/ICRTIT.2012.6206837

K. Visakha and S. S. Prakash, “Detection and Tracking of Human Beings in a Video Using Haar Classifier,” in Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018, 2018, no. Icirca, pp. 1–4. DOI: 10.1109/ICIRCA.2018.8597322

L. Alejandro, S. Moncayo, and M. S. Barragán, “Dataset de contenidos musicales de video , basado en emociones Dataset of music video content , based on emotions,” vol. 7, no. 1, pp. 37–46, 2016. DOI: 10.21500/20275846.2460

L. Ramírez-Carvajal, K. Puerto-López, and J. Ramírez-Mateus, “Mathematical analysis of physical stability in the design of bipolar amplifiers through a computer tool,” J. Phys. Conf. Ser., vol. 1672, p. 012005, Oct. 2020. DOI: 10.1088/1742-6596/1672/1/012005

Mohana and H. V. Ravish Aradhya, “Simulation of object detection algorithms for video survillance applications,” in Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018, 2019, pp. 651–655. DOI: 10.1109/I-SMAC.2018.8653665

M. G. S. K. Sai Teja, M. R. Reddy, and R. Aishwarya, “Man-on-Man Brutality Identification on Video data using Haar Cascade Algorithm,” in Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 2020, no. Iciccs, pp. 274–278. DOI: 10.1109/ICICCS48265.2020.9120872

O. D. Velasco-Delgado, M. F. Pérez-Sandoval, and J. F. Flórez- Marulanda, “Diseño y construcción de una estación de clasificación automática con visión de máquina,” Tecnológicas, vol. 17, no. 32, p. 97, 2014. DOI: 10.22430/22565337.200

R. Cepeda Marín, “Fundamentos de visión artificial y su aplicación a la lectura de matrículas de coches,” Universidad de Cantabria, 2018

R. J. Moreno, O. Fernando, A. S. Dario, A. Hurtado, C. Gordillo, and C. F. Espinosa, “Detección vehicular mediante técnicas de visión de máquina,” ing@UAN, vol. 2, no. 4, pp. 65–71, 2012

R. Phase Tejas and S. Patil, “Building Custom HAAR-Cascade Classifier for face Detection,” Int. J. Eng. Res., vol. V8, no. 12, pp. 881–886, 2020. DOI: 10.17577/IJERTV8IS120350

R. Vera, B. Vintimilla, and H. Rodríguez, “Detección y Extracción de placas de vehículos en señales de video,” Rev. Tecnológica ESPOL, vol. 25, no. 1, p. 11, 2012

V. K. Mishra, S. Kumar, and N. Shukla, “Image Acquisition and Techniques to Perform Image Acquisition,” SAMRIDDHI A J. Phys. Sci. Eng. Technol., vol. 9, no. 01, pp. 21–24, 2017. DOI: 10.18090/samriddhi.v9i01.8333

X. Zou, “A Review of object detection techniques,” in Proceedings - 2019 International Conference on Smart Grid and Electrical Automation, ICSGEA 2019, 2019, pp. 251–254. DOI: 10.1109/ICSGEA.2019.00065

Most read articles by the same author(s)

OJS System - Metabiblioteca |