Aplicación del método de vectores autorregresivos para estimar la oferta de huevos en Colombia

Application of the autoregressive vector method to estimate the supply of eggs in Colombia

Contenido principal del artículo

Susan Elsa Cancino
Giovanni Orlando Cancino-Escalante
Daniel Francisco Cancino-Ricketts
Resumen

El propósito del estudio fue evaluar la oferta de huevos mediante variaciones en su propio precio y del maíz para el periodo 1998-2020 utilizando un modelo multivariado de series temporales. Se utilizó el método de los vectores autorregresivos para la estimación empírica y de acuerdo con los resultados las series de tiempo propuestas fueron integradas de orden uno, estadísticamente significativas, inelásticas y congruentes con la teoría económica. Igualmente, se evidenció la existencia de una relación de causalidad de Granger entre las variables precio del huevo y del maíz con la producción de huevos. Las funciones de impulso respuesta y la descomposición de la varianza identificaron que el precio del huevo no constituye la principal variable que explica los movimientos de la oferta de huevo. Como conclusión se puede argüir que las políticas públicas relacionadas con los precios podrían no ser un instrumento eficaz para incrementar la producción.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

Alves, J., Melo, S., Lima, T. y Sobral, M. (2018). A influencia da taxa de cambio na exportacao de carne bovina e frango. Revista Agroalimentaria, 24(7), 77-90.

Ávila, F. (2020). El temor al libre comercio: Una experiencia vivida. Bogotá: Federación Nacional de Avicultores de Colombia. Documentos Avícolas No. 15. https://fenavi.org/publicaciones-programa-economico/documentos-avicolas-no-15/

Balanay, R. (2015). Analyzing price volatility and supply response of duck eggs in the Philippines for industry development implications relative to climate change adaptation. Annals of Studies in Science Humanities, 1(1), 35-45.

Barrientos -Marin, J. y Vasco-Correa, C. (2020). Producción de biocombustibles y empleo rural en Colombia 2009-2015 Apuntes del Cenes, 39 (70), 233 - 260. DOI: https://doi.org/10.19053/01203053.v39.n70.2020.10426

Bojnec, S. y Fertő, I. (2022). Do different types of Common Agricultural Policy subsidies promote farm employment? Land Use Policy, 112, 1-12. DOI: https://doi.org/10.1016/j.landusepol.2021.105823

Borisova, V., Terentyev, S., Stefanova, I., Sazonova1, E. y Kramlikh, O. (2022). Enrichment study of chopped half-finished poultry meat with calcium by introducing nutrients of animal and vegetable origin. Conference Series: Earth and Environmental Science. 949. doi: 10.1088/1755-1315/949/1/012140 DOI: https://doi.org/10.1088/1755-1315/949/1/012140

Bula, A. (2020). Importancia de la agricultura en el desarrollo socio-económico. Rosario: Puente Académico N. 16, Universidad Nacional del Rosario.

Correa, U., Ribeiro, B., Carvalho, F., Benedicto, G., Correa, E. y Correa, B. (2017). Chicken price transmission elasticity in Sao Paulo state market. Holos, 8, 76-88. doi:10.15628/holos.2017.4528 DOI: https://doi.org/10.15628/holos.2017.4528

Dickey, W y Fuller, D. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. doi:https://doi.org/10.2307/2286348 DOI: https://doi.org/10.1080/01621459.1979.10482531

Federación Nacional de Avicultores de Colombia. (2020). Boletín Fenaviquin. Programa de Estudios Económicos. Bogotá: Federación Nacional de Avicultores de Colombia. Documento No. 304.

Feisali, M. y Niknami, M. (2021). Towards sustainable rural employment in agricultural cooperatives: Evidence from Iran's desert area. Journal of the Saudi Society of Agricultural Sciences, 20 (7), 425-432. DOI: https://doi.org/10.1016/j.jssas.2021.05.004

Granger, C. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424-438. doi:https://doi.org/10.2307/1912791 DOI: https://doi.org/10.2307/1912791

Gujarati, D. (2009). Basic Econometrics. New York: McGraw-Hill.

Hernández, R., Fernández, C. y Baptista, P. (2010). Metodología de la investigación. México: McGraw-Hill Interamericana.

Johansen, S. (1988). Statistical analysis of cointegrating vectors. Journal of Economic Dynamics, 12(2), 231-254. doi:https://doi.org/10.1016/0165-1889(88)90041-3 DOI: https://doi.org/10.1016/0165-1889(88)90041-3

Johansen, S. y Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bulletin of Economic and Statistics, 52, 169-210. doi:https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x DOI: https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x

Lutkepohl, H. (2005). New Introduction to Multiple Times Series Analysis. New York: Springer. DOI: https://doi.org/10.1007/978-3-540-27752-1

Ministerio de Agricultura y Desarrollo Rural. (2020). Cadena Avícola. Bogotá. https://sioc.minagricultura.gov.co/Avicola/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf

Mose, L., Burger, K. y Kuvyenhoven, A. (2007). Aggregate supply response to price incentives: the case of smallholder maize production in Kenya. African Crop Science, 8, 1271-1275.

Nerlove, M. (1958). The Dynamics of supply response: Estimation of farmers´s response to price. California: Johns Hopkins Press.

Noelle, A., Durán, E. y Valenzuela, C. (2020). Huevos de tinamou (nothoprocta perdicaria): una nueva alternativa en Chile. Revista chilena de nutrición, 47(1), 135-14 DOI: https://doi.org/10.4067/S0717-75182020000100135

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2020). FAO Stats. Recuperado el 10 de diciembre de 2020, de http://www.fao.org/faostat/es/#data

Ozkan, B., Rahmive, C. y Kizilay, H. (2011). Supply response for wheat in Turkey. New Medit, 10, 34-38.

Phillips, P. y Perron, P. (1988). Testing for a unit root in time series regression. Biometricka, 75(2), 335-346. doi:https://doi.org/10.2307/2336182 DOI: https://doi.org/10.1093/biomet/75.2.335

Ramírez, M., Martínez, H., Ortíz, L., González, F. y Barrios, C. (2004). Relaciones de precios entre los diferentes eslabones de las cadenas productivas en Colombia. Bogotá: Ministerio de Agricultura y Desarrollo Rural de Colombia.

Sánchez, G. (2001). Transmisión de precios y cointegración en la industria avícola peruana. Debate Agrario, 53, 163-184.

Sanjuán, A. (2006). Metódos de predicción aplicados a series de precios agrarios. Aragón: Centro de Investigación Agroalimentaria de Aragón.

Sims, C. (1980). Macroeconomics and reality. Econometrica, 48, 1- 48. DOI: https://doi.org/10.2307/1912017

Stock, J. y Watson, M. (2001). Vector autoregressions. Journal of Economic Perspectives, 15(14), 101-115. doi: 10.1257/jep.15.4.101 DOI: https://doi.org/10.1257/jep.15.4.101

Tripathi, A. y Prasad, A. (2009). Estimation of agricultural supply response by cointegration approach. The Indian Economic Journal, 57(1), 106-131. doi:https://doi.org/10.1177%2F0019466220090106 DOI: https://doi.org/10.1177/0019466220090106

Trujillo, H. (2010). La metodologia del vector autorregresivo: presentacion y algunas aplicaciones. Scientia, 2(2), 103-108.

Utrera, G. (2004). Vectores autorregresivos e identificación de shocks de política monetaria en Argentina. Revista de Economía y Estadistica, Cuarta Época, 42(2), 105-126. DOI: https://doi.org/10.55444/2451.7321.2004.v42.n2.3809

Vanany, I., Hajar, G., Cyntia Utami, N y Muhamad Jaelani, L. (2021). Modelling food security for staple protein in Indonesia using system dynamics approach. Cogent Engineering, 8:1. doi: https://doi.org/10.1080/23311916.2021.2003945 DOI: https://doi.org/10.1080/23311916.2021.2003945

Sistema OJS - Metabiblioteca |