Numerical simulation of soot formation in a propane axisymmetric laminar diffusion flame

Simulación numérica de la producción de hollín en una llama laminar de difusión axisimétrica de propano

Main Article Content

Adalberto Rafael Salazar-Navarro
Abstract

A computational study of soot formation for a propane flame was conducted in this study using soot formation models. To evaluate the effect in the prediction of soot formation and parameters, such as the flame height and the maximum temperature the simulations were carried out using two different parameters, flow velocity and mass flow per unit area. In this work, the Fire Dynamics Simulator
(FDS) computational tool was used to observe the behavior of soot production, in a propane (C3H8) diffusion laminar flame. For the validation process, the results were compared with experimental data found in the literature. Also, the results using the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) approaches were evaluated to compare the results of soot production,
flame high, and flame temperature. The results obtained show a good agreement with the measured data.

Keywords

Downloads

Download data is not yet available.

Article Details

References

A. J. Cardona-Vargas, C. Echeverri-Uribe, J. Zapata-López, J. Jaramillo-Álvarez, C. Arrieta-Gónzalez, y A. Amell-Arrieta, “Cálculo de propiedades de combustión y análisis de estabilidad de llama para el gas límite 65%CH4 + 35%H2”, Revista Ingenio, vol. 17, n.o 1, pp. 1–8, ene. 2020. Doi: https://doi.org/10.22463/2011642X.232.

H. A. Yepes-Tumay y A. Cardona-Vargas, “Influence of high ethane content on natural gas ignition”, Revista Ingenio, vol. 16, n.o 1, pp. 36–42, ene. 2019. Doi: https://doi.org/10.22463/2011642X.238.

R. Henríquez, R. Demarco, J. L. Consalvi, F. Liu, and A. Fuentes, “The oxygen index on soot production in propane diffusion flames,” in Combustion Science and Technology, May 2014, vol. 186, no. 4–5, pp. 504–517. Doi: https://doi.org/10.1080/00102202.2014.883226.

K. T. Kang, J. Y. Hwang, S. H. Chung, and W. Lee, “Soot zone structure and sooting limit in dif- fusion flames: Comparison of counterflow and co-flow flames,” Combustion and Flame, vol. 109, no. 1–2, pp. 266–281, Apr. 1997. Doi: https://doi.org/10.1016/S0010-2180(96)00163-0.

Y. Zhang, H. Zhou, M. Xie, Q. Fang, and Y. Wei, “Modeling of soot formation in gas burner using reduced chemical kinetics coupled with CFD code,” Chinese Journal of Chemical Engineering, vol. 18, no. 6, pp. 967–978, 2010. Doi: https://doi.org/10.1016/S1004-9541(09)60155-5.

I. M. Kennedy, “Models of soot formation and oxidation,” Progress in Energy and Combustion Science, vol. 23, no. 2, pp. 95–132, Jan. 1997. Doi: https://doi.org/10.1016/S0360-1285(97)00007-5.

K. M. Leung, R. P. Lindstedt, and W. P. Jones, “A simplified reaction mechanism for soot formation in nonpremixed flames,” Combustion and Flame, vol. 87, no. 3–4, pp. 289–305, 1991. Doi: https://doi.org/10.1016/0010-2180(91)90114-Q.

C. C. Lee, M. V. Tran, B. T. Tan, J. B. Ooi, C. T. Chong, and G. Scribano, “A numerical study on soot formation in methane-ethanol diffusion flames,” Fuel, vol. 328, no. July, p. 125313, 2022. Doi: https://doi.org/10.1016/j.fuel.2022.125313.

F. Escudero, A. Fuentes, J. L. Consalvi, F. Liu, and R. Demarco, “Unified behavior of soot production and radiative heat transfer in ethylene, propane and butane axisymmetric laminar diffusion flames at different oxygen indices,” Fuel, vol. 183, pp. 668–679, Nov. 2016. Doi: https://doi.org/10.1016/J.FUEL.2016.06.126.

K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, and M. Vanella, “Sixth Edition Fire Dynamics Simulator User ’s Guide (FDS),” National Institute of Standards and Technology Special Public, 1019, vol. Sixth Edit, p. 434, 2022. Doi: http://dx.doi.org/10.6028/NIST.SP.1019.

K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, and M. Vanella, “Sixth Edition Fire Dynamics Simulator Technical Reference Guide

Volume 1 : Mathematical Model,” National Institute of Standards and Technology ,NIST Special Public 1018-1, vol.Sixth Edit, p. 207, 2022. Doi: http://dx.doi.org/10.6028/NIST.SP.1018.

K. B. McGrattan and G. P. Forney, “Fire dynamics simulator (version 4) :,” Gaithersburg, MD, 2004. Doi: 10.6028/NIST.SP.1019.

W. Yang and W. Blasiak, “Numerical simulation of properties of a LPG flame with high-temperature air,” International Journal of Thermal Sciences, vol. 44, no. 10, pp. 973–985, Oct. 2005. Doi: https://doi.org/10.1016/j.ijthermalsci.2005.03.001

“ICSC 0319 - PROPANO.” http://www.ilo.org/dyn/icsc/showcard.display?_version=2&p_card_id=0319&p_lang=es

OJS System - Metabiblioteca |