Efecto de la concentración de silicato de sodio y ácido fosfórico en la reducción de la temperatura de cocción de las baldosas cerámicas

Efecto de la concentración de silicato de sodio y ácido fosfórico en la reducción de la temperatura de cocción de las baldosas cerámicas

Contenido principal del artículo

Richard Monroy-Sepúlveda
Bladimir Ramón-Valencia
Yebrail Alexis Romero-Arcos

Resumen


Objetivo: determinar la reducción de la temperatura de cocción en baldosas cerámicas en función de la concentración de silicato de sodio y ácido fosfórico presente en la formulación de mezclas de pasta arcillosa. Métodos: la investigación se llevó a cabo utilizando una muestra de arcilla de la formación geológica Guayabo del Área Metropolitana de Cúcuta. Para la elaboración de las probetas se adicionaron a la arcilla tres concentraciones de ácido fosfórico a 0,5%, 1,0% y 1,5% en peso, conjuntamente con tres concentraciones de silicato sódico hidratado de 1,0%, 2,0% y 3,0% en peso respectivamente. Las mezclas se molturaron por vía seca y se realizó el amasado manual y conformado en extrusora. Las probetas obtenidas se secaron en una estufa de secado a 110 ºC y sinterizaron en un horno eléctrico a cinco temperaturas máximas (650 ºC, 680 ºC, 700ºC, 750 ºC y 880 ºC). Posteriormente se aplicaron ensayos de laboratorio para determinar la absorción de agua, contracción en cocido y resistencia a la flexión de las probetas. Resultados: los resultados permitieron afirmar que la adición de estos dos aditivos aceleraron la gresificación de la arcilla utilizada, reduciendo los ciclos y temperatura de sinterización de las piezas cerámicas conformadas, lo que hace inferir que es una alternativa en la reducción del consumo de energía térmica empleada en el proceso de cocción de las empresas fabricantes de baldosas cerámicas. Conclusión: repercutiendo en la disminución del impacto ambiental generado por emisiones de CO2 y material particulado.

Palabras clave: Ácido Fosfórico, Arcilla, Baldosas, Sinterización, Silicato de Sodio.

 

Abstract

 

Objective: Determining the reduction in the firing temperature ceramic tiles according to the concentration of sodium silicate and phosphoric acid present in the formulation of mixtures of clay paste. Methods: the research was conducted using a sample of clay Guayabo geological formation of the Metropolitan Area of Cucuta. For the preparation of the samples were added to the clay three concentrations of phosphoric acid at 0.5%, 1,0% and 1,5% by weight , together with three concentrations of hydrated sodium silicate 1,0%, 2,0% and 3,0 % by weight respetivamente. The mixtures were ground dry processing and manual kneading and shaping was performed using a laboratory extruder biscuit. The produced samples were dried in a drying oven at 110 °C and sintered in an oven five maximum temperatures (650 °C, 680 °C, 700 °C, 750 °C and 880 °C). Subsequently laboratory tests were performed to determine the water absorption and cooked contraction in flexural strength of the test pieces. Results: the results allowed to state that the addition of these two additives accelerated the vitrification of the clay used, reducing the cycles and sintering temperature of the ceramic molded parts, making infer that it is an alternative in reducing the consumption of thermal energy used in the cooking process of the manufacturers of ceramic tiles. Conclusion: which influence the reduction of the environmental impact caused by emissions of CO2 and particulate matter.

Keywords: Phosphoric Acid, Clay, Tiles, Sodium Silicate, Sintering.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Richard Monroy-Sepúlveda, Universidad Libre, Seccional Cúcuta.

Ingeniero de produccion industrial.

Bladimir Ramón-Valencia, Universidad de Pamplona, Pamplona.

Doctor en Ingeniería de materiales

Yebrail Alexis Romero-Arcos, Universidad Libre, Seccional Cúcuta.

Especialista en Gestión de proyectos.

Referencias (VER)

Jeskar Ltda, Inventario Geológico Minero, Ambiental, Tecnológico y Empresarial de los Minerales no Energéticos del Norte de Santander. San José de Cúcuta, Colombia, 2000.

E. Monfort, et al. Análisis de consumos energéticos y emisiones de dióxido de carbono en la fabricación de baldosas cerámicas. Boletín de la Sociedad Española de Cerámica y Vidrio. vol. 49, no. 4, pp. 303-310, 2010.

M. Fernández, “Manual sobre fabricación de baldosas, tejas y ladrillos” [DISCO MAGNETICO]. Laboratorio Técnico Cerámico, Igualada, España. 2000.

C. M. Bou, D. Vuji “Method for preparing an aqueous clay paste use thereof in the manufacture of ceramic materials.” Patente Número de Publicación Internacional WO 2012/089873 A1, Madrid, España. 2012.

Universidad Industrial de Santander UIS, Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente, Análisis químico y mineralógico de arcilla grupo Guayabo de la Mina Támesis del Área Metropolitana de Cúcuta. Bucaramanga, 2012.

A. M. Querol ViUalba. “Aplicación del método de Pfefferkorn al control de la plasticidad en pastas de extrusión”. Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 22, no. 2, pp. 285-325, 1983.

Universidad Francisco de Paula Santander, Laboratorio de Suelos, Análisis de Índice de límites de Atterberg de arcilla grupo Guayabo de la Mina Támesis del Área Metropolitana de Cúcuta. 2013.

American Society For Testing And Materials. ASTM C326-03. Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. 2003.

Norma Técnica Colombiana NTC 4321-3 baldosas cerámicas. Parte 3. Método de ensayo para determinar la absorción de agua, porosidad aparente, densidad relativa aparente y densidad aparente. Bogota D.C. 2005.

Norma Técnica Colombiana NTC 4321-4 baldosas cerámicas. Parte 4. Método de ensayo para determinar la resistencia a la flexión y el módulo de rotura. Bogota D.C. 1998.