Behavior of a draining mixture composed by recycled concrete aggregates and rubberized asphalt concrete
Comportamiento de una mezcla asfáltica drenante empleando agregado reciclado de concreto y asfalto modificado con grano de caucho
Main Article Content
Concrete waste is considered an environmental liability with a negative impact. However, this type of waste presents a high potential to be used as an alternative building material. Therefore, the present study aims to evaluate the applicability of substituting the conventional natural stone aggregate (CA) of a draining asphalt mixture (MD) by a recycled concrete aggregate (RCA). Firstly, RCA was physically characterized to be compared with the AC. Then, two MD mixtures were design with rubberized asphalt concrete (GCR by its spanish acronym): one using the conventional aggregate (control sample) and one with the RCA substituting entirely the CA. Experimental tests under monotonic load (indirect tensile strength - RTI) were conducted over the mixtures, as well as adhesion tests (susceptibility of RTI in wet and dry conditions and abrasion wear Cantabro). The results indicate that for MD mixtures with RCA, a higher content of asphalt is required than with CA. Additionally, it wasfound that the presence of higher asphalt content in MD-RCA mixtures increases its adhesion when compared with the control sample. Therefore, it can be concluded that the use the RCA for MD mixtures, in the proposed way, is technically and environmentally viable.
Downloads
Article Details
M. Arabani and A. R. Azarhoosh, “The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures”, Construction and Building Materials, vol. 35, pp. 1-7, 2012.
T. Afshar, M. M. Disfani, A. Arulrajah, G. A. Narsilio and S. Emam, “Impact of particle shape on breakage of recycled construction and demolition aggregates,” Powder Technology, vol. 308, pp. 1-12, 2017. doi: 10.1016/j.powtec.2016.11.043.
R. Jin, B. Li, T. Zhou, D. Wanatowski and P. Piroozfar, “An empirical study of perceptions towards construction and demolition waste recycling and reuse in China”, Resources Conservation & Recycling, vol. 126, no. April, pp. 86-98, 2017. doi: 10.1016/j.resconrec.2017.07.034.
F. Rodrigues, M. T. Carvalho, L. Evangelista and J. De Brito, “Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants”, Journal of Cleaner Production, vol. 52, pp. 438-445, 2013. doi: 10.1016/j.jclepro.2013.02.023.
EU, "https://ec.europa.eu/eurostat/data/database", 2019, [Online].
L. Zheng et al., “Characterizing the generation and flows of construction and demolition waste in China”, Construction and Building Materials, vol. 136, pp. 405-413, 2017. doi: 10.1016/j.conbuildmat.2017.01.055.
Y. F. Silva, R. A. Robayo, P. E. Mattey and S. Delvasto, “Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete”, Construction and Building Materials, vol. 124, pp. 639-644, 2016. doi: 10.1016/j.conbuildmat.2016.07.057.
J. Chen, Y. Su, H. Si and J. Chen, “Managerial Areas of Construction and Demolition Waste: A Scientometric Review”, International Journal of Environmental Research and Public Health, vol. 15, no. 11, p. 2350, 2018. doi: 10.3390/ijerph15112350.
G. Oliveira-Neto and J. Correia, “Environmental and economic advantages of adopting reverse logistics for recycling construction and demolition waste: A case study of Brazilian construction and recycling companies”, Waste Management & Research, vol. 37, no. 2, pp. 176-185, 2019. doi: 10.1177/0734242X18816790.
V. Tam, “Comparing the implementation of concrete recycling in the Australian and Japanese construction industries”, Journal of Cleaner Production, vol. 17, no. 7, pp. 688-702, 2009. doi: 10.1016/j.jclepro.2008.11.015.
S. Ismail and M. Ramli, “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications”, Construction and Building Materials, vol. 44, pp. 464–476, 2013. doi: 10.1016/j.conbuildmat.2013.03.014.
R. Jin and Q. Chen, “Investigation of Concrete Recycling in the U.S. Construction Industry”, Procedia Engineering, vol. 118, pp. 894–901, 2015.
M. Rafi, A. Qadir and S. Siddiqui, “Experimental testing of hot mix asphalt mixture made of recycled aggregates”, Waste Management and Research, vol. 29, no. 12, pp. 1316-1326, 2011. doi: 10.1177/0734242X10370379.
M. Arm, “Self-cementing properties of crushed demolishing concrete in unbound layers results from triaxial tests and field tests”, Waste Management and Research, vol. 1, no. C, pp. 579-587, 2000. doi: 10.1016/S0713-2743(00)80068-9.
R. Cardoso, R. V. Silva, de J. Brito and R. Dhir, “Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review”, Waste Management, vol. 49, pp. 131-145, 2016. doi: 10.1016/j.wasman.2015.12.021.
M. Bassani and L. Tefa, “Compaction and freeze-thaw degradation assessment of recycled aggregates from unseparated construction and demolition waste”, Construction and Building Materials, vol. 160, pp. 180-195, 2018, doi: 10.1016/j.conbuildmat.2017.11.052.
R. Sri Ravindrarajah and C. T. Tam, “Properties of concrete made with crushed concrete as coarse aggregate,” Magazine of Concrete Research, vol. 37, no. 130, pp. 29-38, 1985. doi: 10.1680/macr.1985.37.130.29.
J. Gómez-Soberón, “Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study”, Cement and Concrete Research, vol. 32, no. 8, pp. 1301-1311, 2002. doi: 10.1016/S0008-8846(02)00795-0.
K. Rahal, “Mechanical properties of concrete with recycled coarse aggregate,” Building and Environment, vol. 42, no. 1, pp. 407-415, 2007.
T. Yaowarat, S. Horpibulsuk, A. Arulrajah, A. Mohammadinia and A. Chinkulkijniwat, “Recycled Concrete Aggregate Modified with Polyvinyl Alcohol and Fly Ash for Concrete Pavement Applications”, Journal of Materials in Civil Engineering, vol. 31, no. 7, p. 04019103, 2019. doi: 10.1061/(asce)mt.1943-5533.0002751.
X. Shi, A. Mukhopadhyay, D. Zollinger and Z. Grasley, “Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate”, Journal Cleaner Production, vol. 225, pp. 414–425, 2019, doi: 10.1016/j.jclepro.2019.03.288.
S. Paranavithana and A. Mohajerani, “Effects of recycled concrete aggregates on properties of asphalt concrete”, Resources, Conservation & Recycling, vol. 48, no. 1, pp. 1-12, 2006. doi: 10.1016/j.resconrec.2005.12.009.
A. Pasandín and I. Pérez, “Laboratory evaluation of hot-mix asphalt containing construction and demolition waste”, Construction and Building Materials, vol. 43, pp. 497-505, 2013. doi: 10.1016/j.conbuildmat.2013.02.052.
I. Pérez and A. Pasandín, “Moisture damage resistance of hot-mix asphalt made with recycled concrete aggregates and crumb rubber”, Journal Cleaner Production, vol. 165, pp. 405–414, 2017. doi: 10.1016/j.jclepro.2017.07.140.
R. Huang, Y. Bird and O. Heidrich, “A review of the use of recycled solid waste materials in asphalt pavements”, Resources, Conservation & Recycling, vol. 52, no. 1, pp. 58-73, 2007. doi: 10.1016/j.resconrec.2007.02.002.
J. Mills-Beale and Z. You, “The mechanical properties of asphalt mixtures with Recycled Concrete Aggregates”, Construction and Building Materials, vol. 24, no. 3, pp. 230-235, 2010. doi: 10.1016/j.conbuildmat.2009.08.046.
S. Bhusal, X. Li and H. Wen, “Evaluation of Effects of Recycled Concrete Aggregate on Volumetrics of Hot-Mix Asphalt", Transportation Research Record Journal of the Transportation Research Board, vol. 2205, no. 1, pp. 36–39, 2011.
A. Pasandín and I. Pérez, “Performance of hot-mix asphalt involving recycled concrete aggregates”, International Journal of Pavement Engineering, vol. 0, no. 0, pp. 1–13, 2018. doi: 10.1080/10298436.2018.1518525.
A. Radević, A. Đureković, D. Zakić and G. Mladenović, “Effects of recycled concrete aggregate on stiffness and rutting resistance of asphalt concrete”, Construction and Building Materials, vol. 136, pp. 386-393, 2017.
M. Muniz de Farias, F. Quiñonez-Sinisterra and H. A. Rondón-Quintana, “Behavior of a Hot-Mix Asphalt Made With Recycled Concrete Aggregate and Crumb Rubber”, Canadian Journal of Civil Engineering, vol. 70, pp. 1-39, 2018.
J. Castaño et al., “Gestión de residuos de construcción y demolición (RCD) en Bogotá: perspectivas y limitantes Gestión de residuos de construcción y demolición (RCD) en Bogotá: perspectivas y limitantes”, Tecnura, vol. 17, no. 38, pp. 121–129, 2013. Available: http://www.scielo.org.co/pdf/tecn/v17n38/v17n38a10.pdf.
R. Robayo-Salazar, P. Mattey-Centeno, Y. Silva-Urrego, D. Burgos-Galindo and S. Arjona, “Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento”, Revusta Tecnura, vol. 19, no. 44, pp. 157-170, 2015. doi: 10.14483/udistrital.jour.tecnura.2015.2.a12.
C. Pacheco-Bustos, L. Fuentes-Pumarejo, E. Sánchez-Cotte and H. Rondón-Quintana, “Residuos de constucción y demolición (RCD), una perspectiva de aprovechamiento para la ciudad de barranquilla desde su modelo de gestión”, Revista Científica Ingeniería y Desarrollo, vol. 35, no. 2, pp. 533–555, 2017.
S. Suárez-Silgado, J. D. Molina, L. Mahecha and L. Calderón, “Diagnóstico y propuestas para la gestión de los residuos de construcción y demolición en la ciudad de Ibagué (Colombia)”, Gestión y Ambiente, vol. 21, no. 1, pp. 9–21, 2018.
M. Serrano-Guzman and D. Perez-Ruiz, “Use of Recycled Materials to Build Paver Blocks for Low-Volume Roads in Developing Countries,” Transportation Research Record: Journal Trasportation Research Board, vol. 2205, no. 1, pp. 138-146, 2011.
J. Sánchez-Molina, A. Sarabia-Guarín, y D. C. Álvarez-Rozo, “Evaluación de materias primas utilizadas en la fabricación de baldosas de gres en el sector cerámico de Norte de Santander (Colombia)”, Respuestas, vol. 21, no. 2, pp. 48 -56, 2016.
T. Hsu, S. Chen and K. Hung, “Performance Evaluation of Asphalt Rubber in Porous Asphalt-Concrete Mixtures”, Journal of Materials in Civil Engineering, vol. 23, no. 3, pp. 342-349, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000181.
I. Sousa, J. Vorobiev, E. Rowe, G. Ishai, “Reacted and activated rubber - an elastomeric asphalt extender”, vol. 2012, 2012.
C. Wang, L. Zhao, W. Cao, D. Cao and B. Tian, “Development of paving performance index system for selection of modified asphalt binder”, Construction and Building Materials, vol. 153, pp. 695-703, 2017.
M. H. Muller. J., “Shelf-Life and Performance properties of bitume rubber”, Asphalt Rubber, vol. 1, pp. 429–441, 2012.
M. Msallam and I. Asi, “Improvement of local asphalt concrete binders using crumb rubber”, Journal of Materials in Civil Engineering, vol. 30, no. 4, pp. 1-7, 2018.
NAPA, “Design, construction, and maintenance of open-graded asphalt friction courses. Information Series 115”, National Asphalt Pavement Association, Lanham, MD, 2002.
R. Elvik and P. Greibe, “Road safety effects of porous asphalt: A systematic review of evaluation studies”, Accident Analysis and Prevention, vol. 37, no. 3, pp. 515–522, 2005. doi: 10.1016/j.aap.2005.01.003.
P. Buddhavarapu, A. Smit and J. Prozzi, “A fully Bayesian before-after analysis of permeable friction course (PFC) pavement wet weather safety”, Accident Analysis and Prevention, vol. 80, pp. 89–96, 2015. doi: 10.1016/j.aap.2015.04.003.
F. Gu, D. Watson, J. Moore and N. Tran, “Evaluation of the benefits of open graded friction course: Case study”, Construction and Building Materials, vol. 189, pp. 131-143, 2018. doi: 10.1016/j.conbuildmat.2018.08.185.
INVIAS, “Instituto Nacional de Vías - INVIAS. Especificaciones Generales para Construcción de Carreteras. Bogotá D.C., Colombia”, 2013.