Development of an electronic nose system to improve the quality control of cocoa in the Norte de Santander Department (Colombia)
Análisis de volátiles en el proceso de fermentado de cacao, mediante una nariz electrónica para el control de calidad del producto en Norte de Santander-Cúcuta
Main Article Content
The presents study consists of an electronic nose compounds of 10 gas sensors of MQ type to classify CLON ICS-95 cocoa samples. The development of different trials was of qualitative type, obtaining a fingerprint that characterized each class, such as: desired fermented: 144 hours, over-fermented and bad fermentation cocoa infected with monilia. All sensors used at different trials were of metal oxides material with the ability to measure various types of gases, butane, propane, alcohols, carbon monoxide in different concentrations, when making contact with the associated volatiles produce an alteration in the output voltage. The signals were acquired by an Arduino-card based for data acquisition and the use of Labview software, allowing the data storing. The algorithm for the extraction of parameters, pre-processing and data processing was carried out through the use of Python software, the results were analyzed by implementing PCA analysis, and the implementation of two methods of data pre-processing such as data centring and scaled, achieving a percentage of variance by using principal components of 97.8% and with the Manhattan method of 93.8% of the percentage of variance on PC1, which was obtained. With these results we could see that the electronic smell system was able to classify the data according to the defined classes, fermented desired: 144 hours, over fermented and bad fermentation cocoa infected with monilia
Downloads
Article Details
A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar, J. B. Rayappan, “Electronic noses for food quality: A review”, Journal of Food Engineering, vol. 144. pp. 103-111,
J. Yan, "Electronic Nose Feature Extraction Methods: A Review", Sensors, vol. 15, no. 11, pp. 27804-27831, 2015.
L. F. Valdez and J. M. Gutiérrez, "Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation", Sensors (Basel), vol. 16, no. 10, pp. 1745, 2016.
M. G.Varnamkhasti, C. A. J. Lozano, A. Anyogu, "Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods", Trends in Food Science & Technology, vol. 80, pp. 71-92, 2018.
Y. Zhong, "Electronic nose for food sensory evaluation, Evaluation Technologies for Food Quality", Chapter: 2, pp. 7-22, 2019.
M. Ezhilan, N. Nesakumar, K. Jayanth Babu, C. S. Srinandan, J. B. Rayappan, "Freshness Assessment of Broccoli using Electronic Nose", Measurement, vol. 145, Pages 735-743, 2019.
R. López, I. Giráldez, A. Palma, M. J. Díaz, "Assessment of compost maturity by using an electronic nose", Waste Management, vol. 48, pp.174-180, 2016.
M. R.Aguilar, L. D. Martínez, P. G. Rosete, R. P. Padilla, R. F. Ramírez, "Identification of breath-prints for the COPD detection associated with smoking and household air pollution by electronic nose", Respiratory Medicine, vo.163, pp. 105-901, 2020.
X. Zhan, Z. Wang, M. Yang, Z. Luo, G. Li, "An electronic nose-based assistive diagnostic prototype for lung cancer detection with conformal prediction", Measurement, vol. 158, 2020.
Z. Liang, F. Tian, C. Zhang, H. Sun, S. Yang, "A correlated information removing based interference suppression technique in electronic nose for detection of bacteria", "Analytica Chimica Acta", vol. 986, pp. 145-152, 2017.
A. C. M. Durán y G. O. Gualdron, "Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra Betacea Sendt)", Ingeniería, Investigación y Tecnología, vol. 15, no. 3, pp. 351-362, 2014.
H. Guilherme J. Voss, S. L. Stevan, R. A. Ayub, "Peach growth cycle monitoring using an electronic nose", Computers and Electronics in Agriculture, vol. 163, 2019.
G. Zambotti, M. Soprani, E. Gobbi, R. Capuano, V. Pasqualetti, C. Di Natale, A. Ponzoni, "Early detection of fish degradation by electronic nose", IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 2019.
M. G. Varnamkhasti, P. Mishra, M. A. Samani, M. N. Boldaji, Z. Izadi, "Rapid detection of grape syrup adulteration with an array of metal oxide sensors and chemometrics, Engineering in Agriculture, Environment and Food, vol. 12, no.3, pp. 351-359, 2019.
P. D. Tran, D. V. Walle, N. D. Clercq, A. D. Winne, J. V. Durme, "Assessing cocoa aroma quality by multiple analytical approaches", Food Research International, vol. 77, no. 3, pp. 657-669, 2015.
J. Tan, W. L. Kerr, "Characterizing cocoa refining by electronic nose using a Kernel distribution model", LWT, vol.10, pp. 1-7, 2019.
L. B. Pereira, O. R. Poveda, I. Ferrocino, M. Giordano, G. Zeppa, "Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics", Food Research International, vol. 123, pp. 684-696, 2019.
A. P. S. Vargas, Ó. F. C. Domínguez, K.P. D. Martínez, "Roadmapping for improving cocoa postharvest management", Ingeniería e Investigación, vol. 28, no. 3, pp. 150-158, 2008.
S. I. Sabilla, R. Sarno, J. Siswantoro, "Estimating Gas Concentration using Artificial Neural Network for Electronic Nose", Procedia Computer Science, vol. 124, pp. 181-188, 2017.
K. B. K. Sai, S. Mukherjee, H. P. Sultana, "Low Cost IoT Based Air Quality Monitoring Setup Using Arduino and MQ Series Sensors With Dataset Analysis", Procedia Computer Science, vol. 165, pp. 322-327, 2019.
Winsen Electronic Technology, consultada el 8 de Septiembre del 2019 https://www.winsen-sensor.com/sensors/mems-gas-sensor.
L. Llamas, "Detector de gases con arduino y la familia de sensores MQ referencias", Tutoriales arduino intermedios, https://www.luisllamas.es/arduino-detector-gas-mq/, consultado, 2016.
D. Dorcea, M. Hnatiuc, I. Lazar, "Acquisition and calibration interface for gas sensors", In Proceedings of the 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), lasi, Romania, 25–28 October, pp. 120–123, 2018.
A. Popa, M. Hnatiuc, M. Paun, O. Geman, D. J. Hemanth, D. Dorcea, L. H. Son, and S. Ghita, "An Intelligent IoT-Based Food Quality Monitoring Approach Using Low-Cost Sensors", Symmetry, vol. 11, no. 3, pp. 374, 2019.
L. Xu, X. Yu, L. Liu, R. Zhang, "A novel method for qualitative analysis of edible oil oxidation using an electronic nose", Food Chemistry, vol. 20, pp. 229-235, 2016.
T. Majchrzak, W. Wojnowski, T. Dymerski, J. Gębicki, J. Namieśnik, "Electronic noses in classification and quality control of edible oils: A review", vol. 246, pp. 192-201, 2018.
S. Qiu, J. Wang, "Food Chemistry, The prediction of food additives in the fruit juice based on electronic nose with chemometrics", Food Chemistry, vol. 230, pp. 208-214, 2017.