The influence of the incorporation of waste glass on the properties of concrete containing pelletized waste plastic

Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón preparado con residuos plásticos pelletizados

Main Article Content

Diego Alejandro Ruiz-Palencia
Luz anyuli Cuervo-Berrio
Cristian Daniel Rodríguez-Rave
Oscar Felipe Arbelaez- Perez
Abstract

The plastic and glass residues are not biodegradable and they have a low recycling rate. They can be utilized as precursors in concrete preparation. This study investigates the effect of the incorporation of waste glass in the mechanical properties of concrete containing pelletized plastic as fine aggregates replacement. The concrete mixtures were designed and prepared with 20% replacement of fine aggregates. Different Plastic: Glass (1:0, 1:1, 1:2, 1:3) volume ratio were prepared. The results show that the slump increases when the content of glass increases. Additionally, the incorporation of glass did not have a profound implications on density. It also demonstrates that glass incorporation improves the compressive strength of concrete. The largest compressive strength was obtained over the 1:2 concrete mix. Concrete containing pelletized plastic and glass is a promising solution to solve of waste management.

Keywords

Downloads

Download data is not yet available.

Article Details

References

S. Amena, “Utilizing solid plastic wastes in subgrade pavement layers to reduce plastic environmental pollution,” Clean. Eng. Technol., vol. 7, p. 100438, 2022, doi: 10.1016/j.clet.2022.100438.

A. M. Hameed and B. A. F. Ahmed, “Employment the plastic waste to produce the light weight concrete,” Energy Procedia, vol. 157, no. 2018, pp. 30–38, 2019, doi: 10.1016/j.egypro.2018.11.160.

Y. Sun, S. Liu, P. Wang, X. Jian, X. Liao, and W. Q. Chen, “China’s roadmap to plastic waste management and associated economic costs,” J. Environ. Manage., vol. 309, no. November 2021, p. 114686, 2022, doi: 10.1016/j.jenvman.2022.114686.

T. R. Walker, “(Micro)plastics and the UN Sustainable Development Goals,” Curr. Opin. Green Sustain. Chem., vol. 30, p. 100497, 2021, doi: 10.1016/j.cogsc.2021.100497.

X. Li, T. Ling, and K. Hung, “Functions and impacts of plastic / rubber wastes as eco-friendly aggregate in concrete – A review,” Constr. Build. Mater., vol. 240, p. 117869, 2020, doi: 10.1016/j.conbuildmat.2019.117869.

E. Chuvieco, M. Burgui-Burgui, A. Orellano, G. Otón, and P. Ruíz-Benito, “Links between climate change knowledge, perception and action: Impacts on personal carbon footprint,” Sustain., vol. 13, no. 14, pp. 1–19, 2021, doi: 10.3390/su13148088.

I. Almeshal, B. A. Tayeh, R. Alyousef, H. Alabduljabbar, A. Mustafa Mohamed, and A. Alaskar, “Use of recycled plastic as fine aggregate in cementitious composites: A review,” Constr. Build. Mater., vol. 253, p. 119146, 2020, doi: 10.1016/j.conbuildmat.2020.119146.

A. Boucedra, M. Bederina, and Y. Ghernouti, “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates,” Constr. Build. Mater., vol. 256, p. 119447, 2020, doi: 10.1016/j.conbuildmat.2020.119447.

S. Bahij, S. Omary, F. Feugeas, and A. Faqiri, “Fresh and hardened properties of concrete containing different forms of plastic waste – A review,” Waste Manag., vol. 113, pp. 157–175, 2020, doi: 10.1016/j.wasman.2020.05.048.

L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Manag., vol. 51, pp. 19–42, 2016, doi: 10.1016/j.wasman.2016.03.005.

L. Pezzi, P. De Luca, D. Vuono, F. Chiappetta, and A. Nastro, “Concrete products with waste’s plastic material (bottle, glass, plate),” vol. 516, pp. 1753–1758, 2006, doi: 10.4028/www.scientific.net/MSF.514-516.1753.

O. F. Arbelaez-Perez, J. F. Venites-Mosquera, Y. M. Córdoba-Palacios, and K. P. Mena-Ramírez, “Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos,” Rev. Politécnica, vol. 16, no. 31, pp. 77–84, 2020, doi: 10.33571/rpolitec.v16n31a6.

F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.

S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, “Mechanical and thermal properties of lightweight recycled plastic aggregate concrete,” J. Build. Eng., p. 101710, 2020, doi: 10.1016/j.jobe.2020.101710.

M. E. Kangavar, W. Lokuge, A. Manalo, W. Karunasena, and M. Frigione, “Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement,” Case Stud. Constr. Mater., vol. 16, no. February, p. e00934, 2022, doi: 10.1016/j.cscm.2022.e00934.

V. Tanwar, K. Bisht, K. I. S. Ahmed Kabeer, and P. V. Ramana, “Experimental investigation of mechanical properties and resistance to acid and sulphate attack of GGBS based concrete mixes with beverage glass waste as fine aggregate,” J. Build. Eng., vol. 41, no. March, p. 102372, 2021, doi: 10.1016/j.jobe.2021.102372.

L. Bostanci, “Effect of waste glass powder addition on properties of alkali-activated silica fume mortars,” J. Build. Eng., vol. 29, no. September 2019, p. 101154, 2020, doi: 10.1016/j.jobe.2019.101154.

C. Farinha, J. de Brito, and R. Veiga, “Incorporation of fine sanitary ware aggregates in coating mortars,” Constr. Build. Mater., vol. 83, pp. 194–206, 2015, doi: 10.1016/j.conbuildmat.2015.03.028.

Y. Jani and W. Hogland, Waste glass in the production of cement and concrete - A review, vol. 2, no. 3. Elsevier, 2014.

M. C. Collivignarelli et al., “The production of sustainable concrete with the use of alternative aggregates: A review,” Sustain., vol. 12, no. 19, pp. 1–34, 2020, doi: 10.3390/SU12197903.

K. H. Tan and H. Du, “Use of waste glass as sand in mortar: Part i - Fresh, mechanical and durability properties,” Cem. Concr. Compos., vol. 35, no. 1, pp. 109–117, 2013, doi: 10.1016/j.cemconcomp.2012.08.028.

Z. Z. Ismail and E. A. AL-Hashmi, “Recycling of waste glass as a partial replacement for fine aggregate in concrete,” Waste Manag., vol. 29, no. 2, pp. 655–659, Feb. 2009, doi: 10.1016/j.wasman.2008.08.012.

S. Arivalagan and V. . Sethuraman, “Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.09.722.

M. Záleská, Z. Pavlík, D. Čítek, O. Jankovský, and M. Pavlíková, “Eco-friendly concrete with scrap-tyre-rubber-based aggregate – Properties and thermal stability,” Constr. Build. Mater., vol. 225, pp. 709–722, 2019, doi: 10.1016/j.conbuildmat.2019.07.168.

A. O. Dawood, H. AL-Khazraji, and R. S. Falih, “Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates,” Case Stud. Constr. Mater., vol. 14, p. e00482, 2021, doi: 10.1016/j.cscm.2020.e00482.

B. A. Herki, J. M. Khatib, and E. M. Negim, “Lightweight concrete made from waste polystyrene and fly ash,” World Appl. Sci. J., vol. 21, no. 9, pp. 1356–1360, 2013, doi: 10.5829/idosi.wasj.2013.21.9.20213.

Y. Wang, D. Joong, Y. Jic, and M. Lachemi, “Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles,” Constr. Build. Mater., vol. 23, no. 8, pp. 2829–2835, 2009, doi: 10.1016/j.conbuildmat.2009.02.036.

Y. W. Choi, D. J. Moon, J. S. Chung, and S. K. Cho, “Effects of waste PET bottles aggregate on the properties of concrete,” Cem. Concr. Res., vol. 35, no. 4, pp. 776–781, 2005, doi: 10.1016/j.cemconres.2004.05.014.

H. A. Elaqra, M. A. A. Haloub, and R. N. Rustom, “Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete,” Constr. Build. Mater., vol. 203, pp. 75–82, 2019, doi: 10.1016/j.conbuildmat.2019.01.077.

B. Balasubramanian, G. V. T. Gopala Krishna, V. Saraswathy, and K. Srinivasan, “Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic,” Constr. Build. Mater., vol. 278, p. 122400, 2021, doi: 10.1016/j.conbuildmat.2021.122400.

OJS System - Metabiblioteca |