Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón preparado con residuos plásticos pelletizados
The influence of the incorporation of waste glass on the properties of concrete containing pelletized waste plastic
Contenido principal del artículo
Los residuos de plástico y vidrio no son biodegradables y tienen baja tasa de reciclaje. Estos pueden utilizarse como precursores en la preparación del hormigón. Este estudio investiga el efecto de la incorporación de residuos de vidrio en las propiedades mecánicas del hormigón elaborado con plástico pelletizado como reemplazo de los agregados finos. Las mezclas de hormigón se fueron diseñaron con un 20% de reemplazo (volumen) de los agregados finos. Se prepararon relaciones en volumen Plastico: Vidrio (1:0, 1:1, 1:2, 1:3). Los resultados mostraron que el asentamiento aumenta con el aumento de vidrio. Adicionalmente, la incorporación de vidrio no afecta significativamente la densidad. Se encontró que la incorporación de vidrio mejora la resistencia a compresión del hormigón. La mayor resistencia a compresión se obtuvo para la mezcla de hormigón 1:2. El hormigón que contiene plástico pelletizado y vidrio es una solución prometedora para resolver los problemas de gestión de residuos.
Descargas
Detalles del artículo
S. Amena, “Utilizing solid plastic wastes in subgrade pavement layers to reduce plastic environmental pollution,” Clean. Eng. Technol., vol. 7, p. 100438, 2022, doi: 10.1016/j.clet.2022.100438.
A. M. Hameed and B. A. F. Ahmed, “Employment the plastic waste to produce the light weight concrete,” Energy Procedia, vol. 157, no. 2018, pp. 30–38, 2019, doi: 10.1016/j.egypro.2018.11.160.
Y. Sun, S. Liu, P. Wang, X. Jian, X. Liao, and W. Q. Chen, “China’s roadmap to plastic waste management and associated economic costs,” J. Environ. Manage., vol. 309, no. November 2021, p. 114686, 2022, doi: 10.1016/j.jenvman.2022.114686.
T. R. Walker, “(Micro)plastics and the UN Sustainable Development Goals,” Curr. Opin. Green Sustain. Chem., vol. 30, p. 100497, 2021, doi: 10.1016/j.cogsc.2021.100497.
X. Li, T. Ling, and K. Hung, “Functions and impacts of plastic / rubber wastes as eco-friendly aggregate in concrete – A review,” Constr. Build. Mater., vol. 240, p. 117869, 2020, doi: 10.1016/j.conbuildmat.2019.117869.
E. Chuvieco, M. Burgui-Burgui, A. Orellano, G. Otón, and P. Ruíz-Benito, “Links between climate change knowledge, perception and action: Impacts on personal carbon footprint,” Sustain., vol. 13, no. 14, pp. 1–19, 2021, doi: 10.3390/su13148088.
I. Almeshal, B. A. Tayeh, R. Alyousef, H. Alabduljabbar, A. Mustafa Mohamed, and A. Alaskar, “Use of recycled plastic as fine aggregate in cementitious composites: A review,” Constr. Build. Mater., vol. 253, p. 119146, 2020, doi: 10.1016/j.conbuildmat.2020.119146.
A. Boucedra, M. Bederina, and Y. Ghernouti, “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates,” Constr. Build. Mater., vol. 256, p. 119447, 2020, doi: 10.1016/j.conbuildmat.2020.119447.
S. Bahij, S. Omary, F. Feugeas, and A. Faqiri, “Fresh and hardened properties of concrete containing different forms of plastic waste – A review,” Waste Manag., vol. 113, pp. 157–175, 2020, doi: 10.1016/j.wasman.2020.05.048.
L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Manag., vol. 51, pp. 19–42, 2016, doi: 10.1016/j.wasman.2016.03.005.
L. Pezzi, P. De Luca, D. Vuono, F. Chiappetta, and A. Nastro, “Concrete products with waste’s plastic material (bottle, glass, plate),” vol. 516, pp. 1753–1758, 2006, doi: 10.4028/www.scientific.net/MSF.514-516.1753.
O. F. Arbelaez-Perez, J. F. Venites-Mosquera, Y. M. Córdoba-Palacios, and K. P. Mena-Ramírez, “Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos,” Rev. Politécnica, vol. 16, no. 31, pp. 77–84, 2020, doi: 10.33571/rpolitec.v16n31a6.
F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.
S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, “Mechanical and thermal properties of lightweight recycled plastic aggregate concrete,” J. Build. Eng., p. 101710, 2020, doi: 10.1016/j.jobe.2020.101710.
M. E. Kangavar, W. Lokuge, A. Manalo, W. Karunasena, and M. Frigione, “Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement,” Case Stud. Constr. Mater., vol. 16, no. February, p. e00934, 2022, doi: 10.1016/j.cscm.2022.e00934.
V. Tanwar, K. Bisht, K. I. S. Ahmed Kabeer, and P. V. Ramana, “Experimental investigation of mechanical properties and resistance to acid and sulphate attack of GGBS based concrete mixes with beverage glass waste as fine aggregate,” J. Build. Eng., vol. 41, no. March, p. 102372, 2021, doi: 10.1016/j.jobe.2021.102372.
L. Bostanci, “Effect of waste glass powder addition on properties of alkali-activated silica fume mortars,” J. Build. Eng., vol. 29, no. September 2019, p. 101154, 2020, doi: 10.1016/j.jobe.2019.101154.
C. Farinha, J. de Brito, and R. Veiga, “Incorporation of fine sanitary ware aggregates in coating mortars,” Constr. Build. Mater., vol. 83, pp. 194–206, 2015, doi: 10.1016/j.conbuildmat.2015.03.028.
Y. Jani and W. Hogland, Waste glass in the production of cement and concrete - A review, vol. 2, no. 3. Elsevier, 2014.
M. C. Collivignarelli et al., “The production of sustainable concrete with the use of alternative aggregates: A review,” Sustain., vol. 12, no. 19, pp. 1–34, 2020, doi: 10.3390/SU12197903.
K. H. Tan and H. Du, “Use of waste glass as sand in mortar: Part i - Fresh, mechanical and durability properties,” Cem. Concr. Compos., vol. 35, no. 1, pp. 109–117, 2013, doi: 10.1016/j.cemconcomp.2012.08.028.
Z. Z. Ismail and E. A. AL-Hashmi, “Recycling of waste glass as a partial replacement for fine aggregate in concrete,” Waste Manag., vol. 29, no. 2, pp. 655–659, Feb. 2009, doi: 10.1016/j.wasman.2008.08.012.
S. Arivalagan and V. . Sethuraman, “Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.09.722.
M. Záleská, Z. Pavlík, D. Čítek, O. Jankovský, and M. Pavlíková, “Eco-friendly concrete with scrap-tyre-rubber-based aggregate – Properties and thermal stability,” Constr. Build. Mater., vol. 225, pp. 709–722, 2019, doi: 10.1016/j.conbuildmat.2019.07.168.
A. O. Dawood, H. AL-Khazraji, and R. S. Falih, “Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates,” Case Stud. Constr. Mater., vol. 14, p. e00482, 2021, doi: 10.1016/j.cscm.2020.e00482.
B. A. Herki, J. M. Khatib, and E. M. Negim, “Lightweight concrete made from waste polystyrene and fly ash,” World Appl. Sci. J., vol. 21, no. 9, pp. 1356–1360, 2013, doi: 10.5829/idosi.wasj.2013.21.9.20213.
Y. Wang, D. Joong, Y. Jic, and M. Lachemi, “Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles,” Constr. Build. Mater., vol. 23, no. 8, pp. 2829–2835, 2009, doi: 10.1016/j.conbuildmat.2009.02.036.
Y. W. Choi, D. J. Moon, J. S. Chung, and S. K. Cho, “Effects of waste PET bottles aggregate on the properties of concrete,” Cem. Concr. Res., vol. 35, no. 4, pp. 776–781, 2005, doi: 10.1016/j.cemconres.2004.05.014.
H. A. Elaqra, M. A. A. Haloub, and R. N. Rustom, “Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete,” Constr. Build. Mater., vol. 203, pp. 75–82, 2019, doi: 10.1016/j.conbuildmat.2019.01.077.
B. Balasubramanian, G. V. T. Gopala Krishna, V. Saraswathy, and K. Srinivasan, “Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic,” Constr. Build. Mater., vol. 278, p. 122400, 2021, doi: 10.1016/j.conbuildmat.2021.122400.