Determination of the use of sterile material for the construction of channels as a drainage system in dumps in the process of forest restoration and compensation: case study Pribbenow mine, Colombia
Determinación del uso del material estéril para la construcción de canales como sistema de drenajes en las escombreras en proceso de restauración y compensación forestal: caso de estudio mina Pribbenow, Colombia
Main Article Content
The Pribbenow mine, located in the department of Cesar in northeastern Colombia, is an intercalation of sandstones and claystones that discordantly overlies the coal-bearing unit, specifically in Pit Peru (Pit Peru and Pit Peru 3) and Pit Chile (Pit Chile and Pit Chile 2). The objective of this research is based on determining the use of sterile material for the construction of canals as a drainage system in the dumps in the process of restoration and forest compensation at the Pribbenow mine, Colombia. Initially, a documentary review was carried out in the different scientific databases; Afterwards, an observational stage in the field was carried out, complemented with the taking of 20 random samples in the exploitation fronts, applying Slake Durability Test, weathering and Washability tests, evaluating the behavior of each type of material. The utility for the construction of channels as a drainage system in the dumps in the process of restoration and forest compensation has a durability range greater than 99%, useful material has a durability range of 98% to 99%, moderately useful material presents a Durability range from 85% to 98%, material with low utility has a durability range of 60% to 85% and material with very low utility has a durability range of less than 60%. In conclusion, the Pit Peru and Pit Peru 3 (Manto Borrego) are optimal for the rocky of the channels, mainly constituted by sandstones and to a lesser amount by siltstone and claystone, it does not present significant changes when exposed to the weathering and Washability tests. maintaining the durability index in the first test of 80% and in the second test of 95%.
Downloads
Article Details
J. C. Gamble, “Durability-Plasticity Classification of Shales and Other Argillaceous Rocks,” University of Illinois, 1971.
J. Martinez-Bofill, J. Corominas, A. Soler, R. Polvoreda, and J. A. Navarro, “Slake Durability Test Para La Caracterización De,” in VIII Simposio Nacional sobre Taludes y Laderas Inestables, 2013, pp. 207–218. [Online]. Available: file:///D:/MIS DOCUMENTOS/Downloads/SLAKE DURABILITY.pdf
J. A. Franklin and R. Chandra, “The slake durability test,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 9, no. 3, pp. 325–328, 1972, doi: https://doi.org/10.1016/0148-9062(72)90001-0.
C. Swain, “Determination of rock strength from slake durability tests, protodyakonov impact tests and los angeles abrasion resistance tests,” National Institute of Technology, 2010. [Online]. Available: https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/FMfcgxwJXxqnCgSpJdSmzWmpffvQKhhL?projector=1&messagePartId=0.2
NGI, “Engineering geology and rock mechanics | Q-system,” 2015. https://www.ngi.no/eng/Services/Technical-expertise/Engineering-geology-and-rock-mechanics/Q-system (accessed Jun. 12, 2021).
J. E. Pickett, O. Kuvshinnikova, L.-P. Sung, and B. D. Ermi, “12 - Design and interpretation of laboratory weathering tests using acceleration parameters of aromatic engineering thermoplastics,” in Plastics Design Library, C. C. White, M. E. Nichols, and J. E. B. T.-S. L. P. of P. and C. Pickett, Eds. William Andrew Publishing, 2020, pp. 233–256. doi: https://doi.org/10.1016/B978-0-12-818367-0.00012-6.
T. Zindove, T. Van Niekerk, T. Wilm, and P. Mercorelli, “Development of a temperature controlled weathering test box to evaluate the life cycle behaviour of interior automotive components,” IFAC-PapersOnLine, vol. 48, no. 4, pp. 117–122, 2015, doi: https://doi.org/10.1016/j.ifacol.2015.07.018.
P. A. Warke and B. J. Smith, “Effects of direct and indirect heating on the validity of rock weathering simulation studies and durability tests,” Geomorphology, vol. 22, no. 3, pp. 347–357, 1998, doi: https://doi.org/10.1016/S0169-555X(97)00078-0.
D. A. Sun et al., “Deformation and strength characteristics of weathered soft rock using triaxial tests,” Int. J. Rock Mech. Min. Sci., vol. 41, pp. 87–92, 2004, doi: https://doi.org/10.1016/j.ijrmms.2004.03.024.
C. L. Lin, J. R. Parga, J. Drelich, and J. D. Miller, “Characterization of Washability of Some Mexican Coals,” Coal Prep., vol. 20, no. 3–4, pp. 227–245, Sep. 1999, doi: 10.1080/07349349908945602.
M. Shahzad and Z. Ali, “Development of simple techniques for determining the extent of coal cleaning-part 2: Estimating coal washability characteristics and separator performance,” Int. J. Coal Prep. Util., pp. 1–14, Jul. 2018, doi: 10.1080/19392699.2018.1496085.
M. H. Chaustre, “Geología de Plancha 48 - La Jagua de Ibirico, escala 1:100.000.,” Bucaramanga, 2000. [Online]. Available: http://recordcenter.sgc.gov.co/B4/13010010020444/documento/PDF/0101204441102000.pdf
M. Hernández, “Geología de la Plancha 48 La Jagua de Ibirico,” Bogotá D.C., Colombia, 2003. [Online]. Available: http://nebula.wsimg.com/57e5189642be3c0751a644da0cbf25ab?AccessKeyId=75F883B260454DDA3D4B&disposition=0&alloworigin=1
F. B. Notestein, C. W. Hubman, and J. W. Bowler, “Geology of the Barco Concession, Republic of Colombia, South America,” GSA Bull., vol. 55, no. 10, pp. 1165–1216, Oct. 1944, doi: 10.1130/GSAB-55-1165.
G. Nova et al., “Jurassic break-up of the Peri-Gondwanan margin in northern Colombia: Basin formation and implications for terrane transfer,” J. South Am. Earth Sci., vol. 89, pp. 92–117, 2019, doi: https://doi.org/10.1016/j.jsames.2018.11.014.
G. Chicangana, A. Kammer, and C. Vargas, “Session: Geodynamics Caribbean tectonic and tectonic evolution Select preferred: Oral La Sierra Nevada de Santa Marta y la Serranía de Perijá, Colombia y Venezuela: ¿Son resultado de la convergencia entre la placa Caribe y el margen suramericano durante e,” in 19th Caribbean Geological Conference - Guadeloupe 2011, Jan. 2011, p. 51. [Online]. Available: https://hal.univ-antilles.fr/hal-02139941/document
G. C. Montón et al., “El posible origen de la sismicidad somera que se presenta en la región que corresponde a la Sierra Nevada de Santa Marta, la Serranía de Perijá y la Península de La Guajira, noreste de Colombia,” Cap&Cua, vol. 6, no. 1, Jan. 2011, [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=3986304
M. G. González et al., “Prospectividad de la Cuenca Cesar Ranchería,” 2008. [Online]. Available: http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Cesar_Rancheria.pdf
A. Arias and C. Morales, Mapa geológico generalizado del departamento del Cesar - Memoria explicativa /. Bogotá D.C., Colombia: Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS) ;, 1999. Accessed: Sep. 21, 2020. [Online]. Available: https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=14212
G. Bayona Chaparro, C. Ojeda Marulanda, A. Cardona Molina, and V. Valencia, “Procedencia de las unidades Paleógenas de la cuenca del Catatumbo y su comparación con las cuencas adyacentes: relación con la convergencia de la placa Caribe,” Geol. Colomb., vol. 37, no. 2, pp. 123–151, 2012.
G. A. Bayona Chaparro et al., “Estratigrafia y procedencia de las unidades comprendidas entre el Campaniano y el Paleogeno en la subcuenca de Cesar: aportes a la evolución tectónica del área,” Geol. Colomb., vol. 34, pp. 3–34, Jan. 2009, [Online]. Available: https://revistas.unal.edu.co/index.php/geocol/article/view/32092