Representation of deflection bowl in flexible airport pavement structures

Representación de cuencos de deflexión en estructuras de pavimento flexible aeroportuario

Main Article Content

Carlos Hernando Higuera-Sandoval
Susan Daniela Camero-Patiño
Laura Sofia Ospina-Moreno
Abstract

The development of a deflection bowl for aircraft is an alternative for the analysis and observation of its loads on a flexible pavement structure and in this way to follow-up the displacement that is generated in the structural package before the pass of the aircrafts that transit in an airport, In this way, the analysis of the effect of the damage of the design aircraft (B-707-320-B) of a fleet, to which a flexible pavement structure was previously calculated with the help of the FAARFILED program and following the FAA methodology, is performed, to achieve the construction of longitudinal, transversal and 3D deflection bowls through the development of a matrix of 5000 points in Excel and WinJULEA modeling software, which resulted in significant deflections higher than 3 mm in the principal train and higher than 2 mm in the nose train in the axis of load application in each case, it was also noted a significant influence area of the aircraft wheels on the pavement and the principal train generated the most damage on the pavement due to the magnitude of the applied load.

Keywords

Downloads

Download data is not yet available.

Article Details

Author Biographies (SEE)

Carlos Hernando Higuera-Sandoval, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia

  1. 1.     ACADEMIC FORMATION
  • Transport and Roads Engineer graduate from Pedagogical and Technological University of Colombia.
  • Specialist in Terrestrial routes from The University of Cauca.
  • Specialist in Roads from the Technical University of Madrid – Spain.
  • Specialist in Land Transportation from the Technical University of Madrid – Spain.
  • Master in Terrestrial Routes from the University of Cauca.
  • Complementary studies of roads in Rosario National University – Argentina.

 

  1. 2.     TEACHING
  • Full professor of Transport and Roads Department of Faculty of Engineering of Pedagogical and Technological University of Colombia.
  • Member of the Group of Research and Development in Road Infraestructure  – GRINFRAVIAL– Category C.
  • Professor at academic programs of Specialization and Master in Road Infrastructure of  UPTC – Tunja.

 

  1. 3.     Author of several books on pavement structures, highlighting:

 

  • MECANICA DE PAVIMENTOS – PRINCIPIOS BASICOS. ISBN 978-958-660-122-1
  • NOCIONES SOBRE METODOS DE DISEÑOS DE ESTRUCTURAS DE PAVIMENTOS PARA CARRETERAS – VOLUMEN I Y II. ISBN 978-958-660-149-8 y ISBN 978-958-660-152-8.
  • NOCIONES SOBRE EVALUACION Y REHABILITACION DE ESTRUCTURAS DE PAVIMENTOS. ISBN: 978-958-660-187-0.

 

  1. 4.     Author of more than twenty six articles about pavement structures.

 

  1. 5.     Visiting Professor at postgraduate courses in road infrastructure, road geotechnics and pavements, roads and transport, geometric design and pavement engineering and land routes of the following universities:

 

  • SANTO TOMAS UNIVERSITY IN TUNJA
  • UNIVERSIDAD DEL NORTE IN BARRANQUILLA
  • THE UNIVERSITY OF CAUCA IN POPAYAN
  • THE UNIVERSITY OF NARIÑO

 

  1. 6.     DIÓDORO SÁNCHEZ Award- 2011, given by the Colombian Society of Engineers for the best engineering book published in 2010.

 

  1. 7.     Professional experience in the private, public and educational sector over 28 years.

 

  1. 8.     Coordinator of the Road Infrastructure Specialization program of Faculty of Engineering of Pedagogical and Technological University of Colombia.

Susan Daniela Camero-Patiño, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia

Ingeniera de Transporte y Vías.

Laura Sofia Ospina-Moreno, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia

Ingeniera de Transporte y Vías.

References

C. H. Higuera Sandoval, “Los cuencos de deflexión en estructuras de pavimentos flexibles”, Revista Facultad de Ingeniería, vol. 15, núm. 20, pp. 30–35, 2006.

D. A. H. Rojas y C. H. H. Sandoval, “Cuencos de deflexión 3d en pavimento flexible”, Ingenio Magno, vol. 11, núm. 2, Art. núm. 2, 2020.

X. Jia, M. Woods, H. Gong, D. Zhu, W. Hu, y B. Huang, “Evaluation of influence of pavement data on measurement of deflection on asphalt surfaced pavements utilizing traffic speed deflection device”, Construction and Building Materials, vol. 270, p. 121842, feb. 2021, doi: 10.1016/j.conbuildmat.2020.121842.

C. H. H.- Sandoval, “Análisis de sensibilidad y correlación entre el ahuellamiento y la deflexión en estructuras de pavimento flexible”, Respuestas, vol. 28, núm. 2, Art. núm. 2, may 2023, doi: 10.22463/0122820X.3472.

C. H. Higuera, “Caracterización de los cuencos de deflexión en estructuras de pavimentos flexibles”, Facultad de Ingeniería, vol. 18, pp. 71–87, 2009.

E. Horak y S. Emery, “Evaluation of airport pavements with FWD deflection bowl parameter benchmarking methodology”.

F. Pigozzi, S. Portas, F. Maltinti, y M. Coni, “Analysis of Runway Deflectometer Campaign for Implementation on Airport Pavement Management System”, International Journal on Pavement Engineering & Asphalt Technology, vol. 15, dic. 2014, doi: 10.2478/ijpeat-2013-0009.

M. Souliman, S. Dessouky, y N. Bastola, “Expanding the Concept of Comprehensive Area Ratio Parameter to the South-Central States: Towards Simplifying the Structural Evaluation of Flexible Pavements at the Network Level”, Publications, dic. 2021, [En línea]. Disponible en: https://repository.lsu.edu/transet_pubs/119

G. White, “New Airport Pavement Technologies from the USA”, presentado en Australian Airport Association National Convention, Gold Coast, Australia, nov. 2014.

F. Pigozzi, M. Coni, S. Portas, y F. Maltinti, “Implementation of Deflection Bowl Measurements for Structural Evaluations at Network Level of Airport Pavement Management System”, presentado en 2014 FAA Worldwide Airport Technology Transfer ConferenceFederal Aviation AdministrationStockton CollegeSRA International, IncorporatedApplied Research Associates, Inc., 2014. Consultado: el 18 de abril de 2024. [En línea]. Disponible en: https://trid.trb.org/View/1322621

C. Núñez et al., “Assessment of pavement deflection under vehicle loads using a 3D-DIC system in the field”, Scientific Reports, vol. 12, jun. 2022, doi: 10.1038/s41598-022-13176-3.

R. L. Brockenbrough, Highway engineering handbook: building and rehabilitating the infrastructure, 3rd ed. New York: McGraw-Hill, 2012.

J. Sun, G. Chai, E. Oh, y P. Bell, “A Review of PCN Determination of Airport Pavements Using FWD/HWD Test”, Int. J. Pavement Res. Technol., vol. 16, núm. 4, pp. 908–926, jul. 2023, doi: 10.1007/s42947-022-00170-1.

K. Gkyrtis, C. Plati, y A. Loizos, “Mechanistic Analysis of Asphalt Pavements in Support of Pavement Preservation Decision-Making”, Infrastructures, vol. 7, p. 61, abr. 2022, doi: 10.3390/infrastructures7050061.

Y. H. (Yang H. Huang, Pavement analysis and design., 3a ed. Pearson/Prentice Hall, 2004.

E. Kashi y G. Shafabakhsh, “Evaluation of aircraft wheel load on pavement damages by layered elastic method”, International Journal of Damage Mechanics, vol. 24, nov. 2014, doi: 10.1177/1056789514562979.

T. Tamagusko, “Airport Pavement Design”, 2020. doi: 10.13140/RG.2.2.19628.00640.

J. Sun, E. Oh, G. Chai, Z. Ma, D. E. L. Ong, y P. Bell, “A systematic review of structural design methods and nondestructive tests for airport pavements”, Construction and Building Materials, vol. 411, p. 134543, ene. 2024, doi: 10.1016/j.conbuildmat.2023.134543.

Federal Aviation Administration, “Airport Pavement Design and Evaluation”, U.S. Department of Transportation, AC No. 150/5320-6G, jul. 2021. [En línea]. Disponible en: https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5320-6G-Pavement-Design.pdf

H. Jain y D. P. Purohit, “A study of an airfield pavement evaluation”, vol. 7, núm. 9, 2020.

Md. T. Miah, E. Oh, G. Chai, y P. Bell, “An overview of the airport pavement management systems (APMS)”, Int. J. Pavement Res. Technol., vol. 13, núm. 6, pp. 581–590, nov. 2020, doi: 10.1007/s42947-020-6011-8.

J.-M. Simonin, V. L. Boursicaud, y P. Hornych, “Correction of deflection bowls measured by rolling devices using simple shape function”, Transportation Engineering, vol. 3, p. 100050, mar. 2021, doi: 10.1016/j.treng.2021.100050.

J. R. Quintero González, “Metodología de la administración federal de aviación para el diseño de estructuras de pavimento flexible para aeropuertos”, Ingenio Magno, vol. 1, núm. 1, Art. núm. 1, 2010, Consultado: el 18 de abril de 2024. [En línea]. Disponible en: http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/13

C. H. Higuera Sandoval, Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras, 1a ed., vol. 1. Tunja (Colombia): Universidad Pedagógica y Tecnológica de Colombia, 2010.

H. Wang, M. Li, N. Garg, y J. Zhao, “Multi-Wheel Gear Loading Effect on Load-Induced Failure Potential of Airfield Flexible Pavement”, International Journal of Pavement Engineering, vol. 21, pp. 805–816, jun. 2020, doi: 10.1080/10298436.2018.1511783.

Most read articles by the same author(s)

OJS System - Metabiblioteca |