One-dimensional hydraulic model to determine flood zones in mountain rivers
Modelo hidráulico unidimensional para determinar zonas de inundación en ríos de montaña
Main Article Content
Floods are recurrent phenomena produced by heavy precipitation events due to different causes: natural and anthropic, they can become potentially destructive, which is why the competent entities in relation to disaster risk management should facilitate the planning of water resources through the implementation of studies such as hydraulic modeling. The purpose of this article is to present the methodology used to determine the flood zones of a mountain river using a one-dimensional hydraulic model, taking as a case study the Pamplonita river in the La Don Juana section, of Colombia. For the study, primary information related to water function, territorial and hydrological structure contained in the Pamplonita River Hydrographic Basin Management Plan (POMCH) was collected from different national databases. The dynamic flow simulation was carried out using the one-dimensional mathematical model HEC-RAS, incorporating the necessary data to the model and once calibrated, the flood stain was determined for return periods of 2.33 and 100 years, knowing the depths and maximum flow velocities in the case study. The hydraulic model allowed to know the flow behavior of a mountain river, showing the floodable areas of 0.75 and 1.20 hectares (Ha) respectively for each return period. Finally, the results of the research can be used by competent planning agencies to reduce flood risks and seek alternatives for prevention and mitigation of future climate impacts.
Downloads
Article Details
J. Han y S. He, “Urban flooding events pose risks of virus spread during the novel coronavirus (COVID-19) pandemic”, Sci. Total Environ., vol. 755, n. º 142491, 2021. doi: 10.1016/j.scitotenv.2020.142491
Y. Hirabayashi et al., “Global flood risk under climate change”, Nat. Clim. Chang., vol. 3, n. º 9, pp. 816–821, 2013.
C. Panos, J. Wolfand y T. Hogue, “Assessing resilience of a dual drainage urban system to redevelopment and climate change”, J. Hydrol., vol. 596, n. º 126101, 2021. doi: 10.1016/j.jhydrol.2021.126101
A. Kumar, A. K. Gupta, R. Bhambri, A. Verma, S. K. Tiwari y A. Asthana, “Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya)”, Polar Sci., vol. 18, pp. 5–20, 2018. doi: 10.1016/j.polar.2018.08.004
Z.-Q. Zhou, S.-P. Xie y R. Zhang, “Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions”, Earth, atmospheric, planet. Sci., vol. 18, n. º 12 e2022255118, 2021. doi: 10.1073/pnas.2022255118
A. Sarhadi, S. Soltani y R. Modarres, “Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis”, J. Hydrol., vol. 458-459, pp. 68–86, 2012. doi: 10.1016/j.jhydrol.2012.06.039
J. Liu, W. Shao, C. Xiang, C. Mei y Z. Li, "Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces", Environmental Research, vol. 182, no. 108929, 2019. doi: 10.1016/j.envres.2019.108929.
Q. Chen, B. Guo, C. Zhao y J. Zhang, “A comprehensive ecological management approach for northern mountain rivers in China”, Chemosphere, vol. 234, n. º 2019, pp. 25–33. doi: 10.1016/j.chemosphere.2019.06.042
M. B. A. Sawaf y K. Kawanisi, “Assessment of mountain river streamflow patterns and flood events using information and complexity measures”, J. Hydrol., vol. 590, n. º 125508, 2020. doi: 10.1016/j.jhydrol.2020.125508.
D. Mihailović, E. Nikolić-Đorić, N. Drešković y G. Mimić, “Complexity analysis of the turbulent environmental fluid flow time series”, Physica A: Statistical Mechanics its Appl., vol. 295, pp. 96–104, 2014. doi: 10.1016/j.physa.2013.09.062
G. Technica, “Integrated Surveying for the Archaeological”, Geographia Technica Assoc., vol. 11, n. º 2, pp. 39–50, 2016.
A. ShahiriParsa, M. Noori y M. Rashidi, “Floodplain Zoning Simulation by Using HEC-RAS and CCHE2D Models in the Sungai Maka River”, Air Soil. Water Res, vol. 9, pp. 55–62, 2016. doi: 10.4137/ASWR.S36089
J. Pinos y L. Timbe, “Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins”, Water Sci. Eng., vol. 12, n. º 1, pp. 11–18, 2019. doi: 10.1016/j.wse.2019.03.001
G. D. Baldassarre, F. Laio y A. Montanari, “Design flood estimation using model selection criteria”, Phys. Chemistry Earth, vol. 34, pp. 606–611, 2009. doi: 10.1016/j.pce.2008.10.066
S. Cohen et al., “Estimating floodwater depths from flood inundation maps and topography”, JAWRA J. Am. Water Resour. Assoc, vol. 54, pp. 847–858, 2017. doi: 10.1111/1752-1688.12609
O. A. Ibrahim, D. W. Goshime, S. T. Gebrekirtos y R. Absi, “Panacea to the catastrophe through mapping in anticipation of mitigating the flood magnitude along Wabi Shebele River Basin of Somalia”, Natural Hazards Res., 2023. doi: 10.1016/j.nhres.2023.11.001
P. A. Basile, G. Riccardi, F. Peruzzo y M. Garcia, “Two-dimensional hydrodynamic modelling of the lower Parana River”, Aqua-LAC, vol. 8, n. º 2, pp. 1–13, 2016.
E. E. Wohl y D. M. Thompson, “Velocity characteristics along a small step-pool channel”, Earth Surf. Processes Landforms, vol. 25, pp. 353–367, 2000. doi: 10.1002/(SICI)1096-9837(200004)25:4%3C353::AID-ESP59%3E3.0.CO;2-5
A. N. Papanicolaou, A. Bdour y E. Wicklein, “One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams”, J. Hydraulic Res., pp. 357–375. doi: 10.1080/00221686.2004.9728402
A. Casas, G. Benito, V. Thorndycraft y M. Rico, “The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling”, Earth Surf. Process. Landf., vol. 31, n.º 4, 2006. doi: 10.1002/esp.1278
E. Bladé, L. Cea y G. Corestein, “Modelización numérica de inundaciones fluviales”, Ing. Del Agua, vol. 18, n. º 1, 2014. doi: 10.4995/ia.2014.3144
G. Papaioannou, A. Loukas, L. Vasiliades y G. T. Aronica, “Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach”, Nat. Hazards, vol. 83, pp. 117–132, 2016. doi:
1007/s11069-016-2382-1
Y. E. Rodríguez Pérez, J. A. Ramón Valencia y J. H. Suárez Gélvez, “Conceptual framework for watershed management based on the systematization of the pilot project for Colombia of the Pamplonita river basin”, Respuestas, vol. 23, n. º 2, pp. 96–109, 2018. doi: 10.22463/0122820X.1742
Minambiente, “Acuerdo de voluntades plataforma colaborativa rio Pamplonita”, Minist. Ambient., 2021. Disponible en: www.minambiente.gov.co/wp-content/uploads/2022/08/acuerdo-de-voluntades-plataforma-colaborativa-rio-pamplonita.pdf
CORPONOR, “Plan de ordenación y manejo de la cuenca hidrográfica del rio Pamplonita”. Cúcuta, 2010. Disponible en: http://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/22602/37-POMCH_Pamplonita_ajustado.pdf;jsessionid=094FB5BF1A71C2A64D3BD91FDE61456A?sequence=1
D. Mena Rentería, M. Á. Cañón Ramos y A. M. Suárez Rodríguez, “Modelación de los impactos de los escenarios de cambio climático en la cuenca del río Pamplonita en Norte de Santander”, EIA, vol. 17, pp. 1–12, 2020. doi: 10.24050/reia.v17i33.1265
L. Vargas-Garay, O. Torres-Goyeneche y G. Carrillo-Soto, “Evaluation of SCS - unit hydrograph model to estimate peak flows in watersheds of Norte de Santander”, Respuestas, vol. 24, n. º 1, pp. 6-16, 2019. doi: 10.22463/0122820X.1743
D. A. Castro-Llanos y Y. Carvajal-Escobar, “Análisis de tendencia en la precipitación pluvial anual y mensual en el departamento del Valle del Cauca”, Memorias, vol. 11, n.º 20, pp. 9–18, 2013.
V. Martínez Alvarez, A. I. García García y F. Ayuga Téllez, “Monitorización de dos cuencas hidrológicas en la comunidad de Madrid mediante el empleo de sensores doppler para el aforo de corrientes”, Ing. Del Agua, vol. 11, n. º 2, pp. 201–210, 2004. doi: 10.4995/ia.2004.2528
T. Caputo et al., “Estimation of the Uncertainties Introduced in Thermal Map Mosaic: A Case of Study with PIX4D Mapper Software”, remote sens., vol. 15, n. º 18, p. 4385, 2023. doi: 10.3390/rs15184385
Namara, W.G., Damisse, T.A. y Tufa, F.G. “Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model”. Earth Syst. Environ. Vol. 8, pp. 1449–1460 (2022). doi: 10.1007/s40808-021-01166-9
N. Francisco Nicolás, A. Turrent–Fernández, H. E. Flores–López, M. R. Martínez–Menes y J. F. Enríquez–Quiroz, “Estimación del escurrimiento superficial con el método SCS–CN en el trópico subhúmedo de México”, Terra Latinoam., vol. 28, n.º 1, pp. 71–78, 2010.
Palacio, C., García, F. y García, U. “Calibración de un modelo hidrodinámico 2D para la bahía de Cartagena”. DYNA(Colombia), vol. 77, n.º 164, pp.152–166, 2010.