Single-pole antenna for FM fractal type based on Hilbert curve

Antena monopolo para FM tipo fractal basado en la curva de Hilbert

Main Article Content

Jorge Enrique Herrera-Rubio
Karla Yohana Sánchez-Mojica
Steven Antonio Florez-Prieto
Abstract

The present experimental research presents the design and implementation of a fractal-type monopole antenna for Frequency Modulation (FM), which is based on a mathematical process to calculate the distances of the sections in the construction of the radiator element based on the order of the Hilbert curve fractal. The design stage begins with the study of the state of the art of the Hilbert fractal, where its main characteristic is to fill a flat space, this helps in the optimization of the antenna area to be consolidated, reducing unused sections of it, consequently, the corresponding simulation of the aforementioned design is carried out from which the values of the field behavior in the antenna, gain and radiation pattern are obtained. The implementation stage consists of searching for the raw material, for this the FR4 substrate is used on which the toner printing is carried out, and then it is burned on a copper sheet with ferric chloride. Finally, the implementation proceeds to verify the operation using an FM transmitter, to which the antenna is adapted in a configuration at the 103MHz frequency according to the mathematical analyzes obtained, in the same way the technical tests of operation to obtain the results proposed in the research.

Keywords

Downloads

Download data is not yet available.

Article Details

References

P. Lupera, G. Flores, and A. Montaluisa, “Antena UHF multifuncional del tipo fractal microstrip basada en la alfombra de Sierpinski,” Rev. Investig. en Tecnol. la Inf., vol. 9, no. 17, pp. 4–16, 2021, doi: 10.36825/riti.09.17.002. DOI: https://doi.org/10.36825/RITI.09.17.002

Y. Huang and K. Boyle, ANTENNAS, Second. Liverpool, 2021.

T. A. Elwi, Z. A. A. Hassain, and O. A. Tawfeeq, “Hilbert metamaterial printed antenna based on organic substrates for energy harvesting,” IET Microwaves, Antennas Propag., vol. 13, no. 12, pp. 2185–2192, 2019, doi: 10.1049/iet-map.2018.5948. DOI: https://doi.org/10.1049/iet-map.2018.5948

A. Al-Adhami and E. Erçelebi, “A reconfigurable flexible fractal-based monopole antenna for portable applications,” Int. J. Commun. Syst., vol. 34, no. 11, pp. 1–16, 2021, doi: 10.1002/dac.4851. DOI: https://doi.org/10.1002/dac.4851

L. Liu et al., “A Novel Analytical Method for Multi-Frequency Transmission Line Transformer,” IEEE Microw. Wirel. Components Lett., vol. 26, no. 8, pp. 556–558, Aug. 2016, doi: 10.1109/LMWC.2016.2585555. DOI: https://doi.org/10.1109/LMWC.2016.2585555

C. Goswami, R. Ghatak, and D. R. Poddar, “Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators,” IET Microwaves, Antennas Propag., vol. 12, no. 10, pp. 1719–1727, 2018, doi: 10.1049/iet-map.2017.1215. DOI: https://doi.org/10.1049/iet-map.2017.1215

M. Palandoken and C. Gocen, “A modified Hilbert fractal resonator based rectenna design for GSM900 band RF energy harvesting applications,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 1, pp. 1–8, 2019, doi: 10.1002/mmce.21643. DOI: https://doi.org/10.1002/mmce.21643

S. Ülker, “Antennas and propagation course in education,” Int. J. Electr. Eng. Educ., vol. 57, no. 4, pp. 281–300, 2020, doi: 10.1177/0020720918800441. DOI: https://doi.org/10.1177/0020720918800441

N. Sharma and S. Bhatia, “Comparative analysis of hybrid fractal antennas: A review,” Int. J. RF Microw. Comput. Eng., vol. 31, no. 9, pp. 39–43, 2021, doi: 10.1002/mmce.22762. DOI: https://doi.org/10.1002/mmce.22762

J. Hurtado, “Metodologia de la Investigación Holistica,” Caracas. 2012, [Online]. Available: https://metodologiaecs.files.wordpress.com/2015/09/metodologia-de-investigacion-holistica-3ra-ed-2000-jacqueline-hurtado-de-barrera-666p.pdf.

R. Hernández, C. Fernandez, and M. del P. Baptista, Metodología de la investigación. 2018. DOI: https://doi.org/10.18041/978-958-8981-45-1

R. Garg, “Microstrip Antenna Design Handbook (Artech House Antennas and Propagation Library) by P. Bhartia, Inder Bahl, R. Garg, A. Ittipiboon (z-lib.org),” Electromagnetic Engineering. 2000.

T. Scheipel and M. Baunach, “PCB : An Automated Printed Circuit Board Generation Approach for Embedded Systems Prototyping papageno PCB : An Automated Printed Circuit Board Generation Approach for Embedded Systems Prototyping,” no. April, 2019.

J. Calixto, B. Rodríguez Díaz, J. S. Wood, and M. G. Nappa, “Diseño Y Simulación De Una Antena Pifa Para Iot Design and Simulation of a Pifa Antenna for Iot,” Rev. Telemática, vol. 20, no. 2, pp. 97–112, 2021, [Online]. Available: http://revistatelematica.cujae.edu.cu.

P. Manns and C. Kirches, “Multi‐dimensional Sum‐Up Rounding using Hilbert curve iterates,” Pamm, vol. 19, no. 1, pp. 4–5, 2019, doi: 10.1002/pamm.201900065. DOI: https://doi.org/10.1002/pamm.201900065

W. Sikorsky, C. Szymczak, K. Siodla, and F. Polak, “Hilbert curve fractal antenna for detection and on-line monitoring of partial discharges in power transformers,” Sci. Technol., vol. 20, no. 3, pp. 343–351, 2018, [Online]. Available: https://academic.oup.com/edited-volume/46263/chapter/405488317. DOI: https://doi.org/10.17531/ein.2018.3.1

J. A. Russer, “Printed Self-Complementary Hilbert Curve ( SCHC ) Fractal Broad-Band Antenna,” 2018 Balt. URSI Symp., pp. 206–209, 2018. DOI: https://doi.org/10.23919/URSI.2018.8406743

P. V. B. Tome and M. A. B. Terada, “Optimization of Shaped Log-Periodic Antennas,” 2019 SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. IMOC 2019, vol. 2019-Janua, pp. 2019–2021, 2019, doi: 10.1109/IMOC43827.2019.9317677. DOI: https://doi.org/10.1109/IMOC43827.2019.9317677

J. Talib, A. Taat, A. N. Dagang, M. H. Jusoh, R. Umar, and W. H. W. Hassan, “Development of low cost HF antenna for amplitude observation at equatorial region,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1–8, pp. 21–25, 2018.

M. Khater, “High-Speed Printed Circuit Boards :,” pp. 34–45, 2020. DOI: https://doi.org/10.1109/MCAS.2020.3005484

K. F. Ahmed and R. H. Abdullah, “Design and Simulation of Microstrip Patch Antenna for Wireless Applications,” Kurdistan J. Appl. Res., vol. 2, no. 3, pp. 365–368, 2017, doi: 10.24017/science.2017.3.27. DOI: https://doi.org/10.24017/science.2017.3.27

F. Rancy, Manual Comprobación Técnica del Espectro, vol. 1. Ginebra,Suiza, 2011.

D. Guha and A. Yahia, Microstrip and Printed Antennas New Trends , Techniques, vol. 2. 2012.

N. Lethaby, “Wireless connectivity for the Internet of Things, one size does not fit all,” Texas Instruments, p. 16, 2017, [Online]. Available: http://www.ti.com/lit/wp/swry010a/swry010a.pdf.

B. 119. ITU-T Recommendation, “Cálculo de diagramas de radiación de antenas transmisoras en ondas métricas y decimétricas,” ITU Publ., 1995.

A. B. Smolders, H. J. Visser, and U. Johannsen, Modern Antennas and Microwave Circuits -- A complete master-level course, no. September. 2019.

C. A. Balanis, Antenna theory: analysis and design. John Wiley & Sons, 2016.

A. Bhuvaneshwari, R. Hemalatha, and T. Satyasavithri, “Semi Deterministic Hybrid Model for Path Loss Prediction Improvement,” Procedia Comput. Sci., vol. 92, pp. 336–344, 2016, doi: 10.1016/j.procs.2016.07.388. DOI: https://doi.org/10.1016/j.procs.2016.07.388

J. Herrera, “Metodología de medición del espectro con técnicas experimentales para obtener modelos de propagación,” vol. 1, p. 165, 2021, [Online]. Available: https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/2015_s1/pag_contenido/02032015/libros_2015.jsp.

Most read articles by the same author(s)

OJS System - Metabiblioteca |