Applications of passive optical sensors for the assessment of forest aboveground biomass: a comprehensive review

Aplicaciones de sensores ópticos pasivos para la evaluación de biomasa aérea forestal: una revisión integral

Main Article Content

Jorge Eliecer Galvis-Daza
Dino Carmelo Manco-Jaraba
Abstract

Forests play a fundamental role in mitigating the effects generated to the atmosphere by the emission of greenhouse gases due to their capacity to capture carbon. The purpose of this manuscript is to review the methodology used for the quantification of carbon in aerial biomass with the support of passive optical sensors. A search of published literature was performed in academic and scientific databases including Scopus, Web of science, Springer link, Multidisciplinary Digital Publishing Institute and the academic search engine Consensus. The results obtained show that field work is the starting point for the development and application of various techniques, the estimation of carbon sequestration using manual techniques generates good accuracy, but increases time and labor costs. The combination of field data with satellite images and machine learning algorithms allows calculations over large areas with high accuracy, allowing the generation of predictive models and facilitating the evaluation of large areas of land quickly and reliably, which is essential in the management of natural resources.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
8%
33%
Days to publication 
269
145

Indexed in

Editor & editorial board
profiles
Publisher 
Universidad Francisco de Paula Santander

Article Details

References

M. Filonchyk, M. P. Peterson, L. Zhang, V. Hurynovich, and Y. He, “Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O,” Science of The Total Environment, vol. 935, p. 173359, Jul. 2024, doi: 10.1016/j.scitotenv.2024.173359. DOI: https://doi.org/10.1016/j.scitotenv.2024.173359

J. G. J. Olivier and Peters. J.A.H.W., “TRENDS IN GLOBAL CO2 AND TOTAL GREENHOUSE GAS EMISSIONS,” The Hague, 2020.

G. Boeing, C. Pilgram, and Y. Lu, “Urban street network design and transport-related greenhouse gas emissions around the world,” Transp Res D Transp Environ, vol. 127, p. 103961, Feb. 2024, doi: 10.1016/j.trd.2023.103961. DOI: https://doi.org/10.1016/j.trd.2023.103961

F. Meng et al., “Planet-compatible pathways for transitioning the chemical industry,” Proceedings of the National Academy of Sciences, vol. 120, no. 8, Feb. 2023, doi: 10.1073/pnas.2218294120. DOI: https://doi.org/10.1073/pnas.2218294120

Y. Yan et al., “Carbon dioxide-focused greenhouse gas emissions from petrochemical plants and associated industries: Critical overview, recent advances and future prospects of mitigation strategies,” Process Safety and Environmental Protection, vol. 188, pp. 406–421, Aug. 2024, doi: 10.1016/j.psep.2024.05.136. DOI: https://doi.org/10.1016/j.psep.2024.05.136

A. Ragothaman and W. Anderson, “Air Quality Impacts of Petroleum Refining and Petrochemical Industries,” Environments, vol. 4, no. 3, p. 66, Sep. 2017, doi: 10.3390/environments4030066. DOI: https://doi.org/10.3390/environments4030066

A. P. Garrido, F. Tovar Bernal, J. D. Fontanilla, Y. Camargo Caicedo, and A. M. Vélez-Pereira, “Assessment of livestock greenhouse gases in Colombia between 1995 and 2015,” Heliyon, vol. 8, no. 12, p. e12262, Dec. 2022, doi: 10.1016/j.heliyon.2022.e12262. DOI: https://doi.org/10.1016/j.heliyon.2022.e12262

D. He, X. Deng, X. Wang, and F. Zhang, “Livestock greenhouse gas emission and mitigation potential in China,” J Environ Manage, vol. 348, p. 119494, Dec. 2023, doi: 10.1016/j.jenvman.2023.119494. DOI: https://doi.org/10.1016/j.jenvman.2023.119494

R. Shaw and S. Mukherjee, “The development of carbon capture and storage (CCS) in India: A critical review,” Carbon Capture Science & Technology, vol. 2, p. 100036, Mar. 2022, doi: 10.1016/j.ccst.2022.100036. DOI: https://doi.org/10.1016/j.ccst.2022.100036

Naciones Unidas, “PROTOCOLO DE KYOTO DE LA CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE EL CAMBIO CLIMÁTICO,” 1998. Accessed: Nov. 01, 2022. [Online]. Available: https://unfccc.int/resource/docs/convkp/kpspan.pdf

P. N. Khanal, D. L. Grebner, I. A. Munn, S. C. Grado, R. K. Grala, and J. E. Henderson, “Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States,” For Policy Econ, vol. 75, pp. 112–119, Feb. 2017, doi: 10.1016/J.FORPOL.2016.07.004. DOI: https://doi.org/10.1016/j.forpol.2016.07.004

É. Király and A. Borovics, “Carbon sequestration of Hungarian forests by management system and protection status,” Trees, Forests and People, p. 100511, Jan. 2024, doi: 10.1016/j.tfp.2024.100511. DOI: https://doi.org/10.1016/j.tfp.2024.100511

X. Chu, J. Zhan, Z. Li, F. Zhang, and W. Qi, “Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China,” J Clean Prod, vol. 215, pp. 382–389, Apr. 2019, doi: 10.1016/J.JCLEPRO.2018.12.296. DOI: https://doi.org/10.1016/j.jclepro.2018.12.296

L. Deng, H. Yuan, J. Xie, L. Ge, and Y. Chen, “Herbaceous plants are better than woody plants for carbon sequestration,” Resour Conserv Recycl, vol. 184, p. 106431, Sep. 2022, doi: 10.1016/j.resconrec.2022.106431. DOI: https://doi.org/10.1016/j.resconrec.2022.106431

H. M. S. da Silva, J. C. B. Dubeux Júnior, M. L. Silveira, M. A. Lira Junior, A. S. Cardoso, and J. M. B. Vendramini, “Greenhouse gas mitigation and carbon sequestration potential in humid grassland ecosystems in Brazil: A review,” J Environ Manage, vol. 323, p. 116269, Dec. 2022, doi: 10.1016/j.jenvman.2022.116269. DOI: https://doi.org/10.1016/j.jenvman.2022.116269

Y. Idrissou, E. Vall, V. Blanfort, M. Blanchard, I. Alkoiret Traoré, and P. Lecomte, “Integrated crop-livestock effects on soil carbon sequestration in Benin, West Africa,” Heliyon, vol. 10, no. 7, p. e28748, Apr. 2024, doi: 10.1016/j.heliyon.2024.e28748. DOI: https://doi.org/10.1016/j.heliyon.2024.e28748

S. S. Bhattacharyya et al., “Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices,” Science of The Total Environment, vol. 826, p. 154161, Jun. 2022, doi: 10.1016/j.scitotenv.2022.154161. DOI: https://doi.org/10.1016/j.scitotenv.2022.154161

F. F. G. D. Leite et al., “Greenhouse gas emissions and carbon sequestration associated with Integrated Crop–Livestock–Forestry (ICLF) systems,” Environmental Reviews, vol. 31, no. 4, pp. 589–604, Dec. 2023, doi: 10.1139/er-2022-0095. DOI: https://doi.org/10.1139/er-2022-0095

K. Gray, “Carbon Sequestration Atlas of the United States and Canada (Third Edition),” Pittsburgh, PA, and Morgantown, WV (United States), Nov. 2010. doi: 10.2172/1814019. DOI: https://doi.org/10.2172/1814019

J. H. Paredes-Ángeles, “Consideraciones generales para la elaboración de un atlas de almacenamiento geológico de CO2 del Perú,” Boletín de Geología, vol. 42, no. 3, pp. 243–260, Oct. 2020, doi: 10.18273/revbol.v42n3-2020011. DOI: https://doi.org/10.18273/revbol.v42n3-2020011

T. Dube, O. Mutanga, C. Shoko, A. Samuel, and T. Bangira, “Remote sensing of aboveground forest biomass: A review ESA-Alcantra View project Remote sensing of water use and water stress in African savanna ecosystem from local to regional scale: Implications for land productivity View project,” International Society for Tropical Ecology, vol. 57, no. 2, pp. 125–132, 2016, Accessed: Nov. 01, 2022. [Online]. Available: www.tropecol.com

K. Black, G. Lanigan, M. Ward, I. Kavanagh, D. Ó. hUallacháin, and L. O. Sullivan, “Biomass carbon stocks and stock changes in managed hedgerows,” Science of The Total Environment, vol. 871, p. 162073, May 2023, doi: 10.1016/j.scitotenv.2023.162073. DOI: https://doi.org/10.1016/j.scitotenv.2023.162073

S. L. Lewis, C. E. Wheeler, E. T. A. Mitchard, and A. Koch, “Restoring natural forests is the best way to remove atmospheric carbon,” Nature, vol. 568, no. 7750, pp. 25–28, Apr. 2019, doi: 10.1038/d41586-019-01026-8. DOI: https://doi.org/10.1038/d41586-019-01026-8

M. Casiano-Domínguez, F. Paz-Pellat, M. Rojo-Martínez, S. Covaleda-Ocon, and D. R. Aryal, “Anatomía de la madera de tres especies de Mimosa (Leguminosae-Mimosoideae) distribuidas en México,” Madera y Bosques, vol. 24, 2018, doi: 10.21829/myb.2018.2401894. DOI: https://doi.org/10.21829/myb.2018.2401894

M. Menéndez-Miguélez et al., “Species-specific and generalized biomass models for estimating carbon stocks of young reforestations,” Biomass Bioenergy, vol. 161, p. 106453, Jun. 2022, doi: 10.1016/j.biombioe.2022.106453. DOI: https://doi.org/10.1016/j.biombioe.2022.106453

I. Diédhiou et al., “Allometric equations and carbon stocks in tree biomass of Jatropha curcas L. in Senegal’s Peanut Basin,” Glob Ecol Conserv, vol. 9, pp. 61–69, Jan. 2017, doi: 10.1016/j.gecco.2016.11.007. DOI: https://doi.org/10.1016/j.gecco.2016.11.007

A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J Plant Physiol, vol. 143, no. 3, pp. 286–292, Mar. 1994, doi: 10.1016/S0176-1617(11)81633-0. DOI: https://doi.org/10.1016/S0176-1617(11)81633-0

M. Marabel-García, “DEPARTAMENTO DE INGENIERÍA Y CIENCIAS AGRARIAS ESCUELA SUPERIOR Y TÉCNICA DE INGENIERÍA AGRARIA ESTIMACIÓN DE LA BIOMASA AÉREA DE HERBÁCEAS CON SENSORES AEROTRANSPORTADOS DE ALTA RESOLUCIÓN,” 2016. Accessed: Nov. 01, 2022. [Online]. Available: https://buleria.unileon.es/bitstream/handle/10612/5735/Tesis%20Miguel%20Marabel.pdf?sequence=1&isAllowed=y

S. D. Madundo, E. W. Mauya, and C. J. Kilawe, “Comparison of multi-source remote sensing data for estimating and mapping above-ground biomass in the West Usambara tropical montane forests,” Sci Afr, vol. 21, p. e01763, Sep. 2023, doi: 10.1016/j.sciaf.2023.e01763. DOI: https://doi.org/10.1016/j.sciaf.2023.e01763

E. Chuvieco, “Fundamentos de teledección,” Ediciones RIALP S.A., 1996.

R. Avtar et al., “Assessing sustainable development prospects through remote sensing: A review,” Remote Sens Appl, vol. 20, p. 100402, 2020, doi: 10.1016/j.rsase.2020.100402. DOI: https://doi.org/10.1016/j.rsase.2020.100402

V. Chaudhary, P. Gaur, and S. Rustagi, “Sensors, society, and sustainability,” Sustainable Materials and Technologies, vol. 40, p. e00952, Jul. 2024, doi: 10.1016/j.susmat.2024.e00952. DOI: https://doi.org/10.1016/j.susmat.2024.e00952

Y. Feng, S. Chen, X. Tong, Z. Lei, C. Gao, and J. Wang, “Modeling changes in China’s 2000–2030 carbon stock caused by land use change,” J Clean Prod, vol. 252, p. 119659, Apr. 2020, doi: 10.1016/j.jclepro.2019.119659. DOI: https://doi.org/10.1016/j.jclepro.2019.119659

Z. Liu et al., “Mapping and analyzing the spatiotemporal dynamics of forest aboveground biomass in the ChangZhuTan urban agglomeration using a time series of Landsat images and meteorological data from 2010 to 2020,” Science of The Total Environment, vol. 944, p. 173940, Sep. 2024, doi: 10.1016/j.scitotenv.2024.173940. DOI: https://doi.org/10.1016/j.scitotenv.2024.173940

P. C. Pandey, H. Balzter, P. K. Srivastava, G. P. Petropoulos, and B. Bhattacharya, “Future perspectives and challenges in hyperspectral remote sensing,” in Hyperspectral Remote Sensing, Elsevier, 2020, pp. 429–439. doi: 10.1016/B978-0-08-102894-0.00021-8. DOI: https://doi.org/10.1016/B978-0-08-102894-0.00021-8

C. Schulz, M. Förster, S. V. Vulova, A. D. Rocha, and B. Kleinschmit, “Spectral-temporal traits in Sentinel-1 C-band SAR and Sentinel-2 multispectral remote sensing time series for 61 tree species in Central Europe,” Remote Sens Environ, vol. 307, p. 114162, Jun. 2024, doi: 10.1016/j.rse.2024.114162. DOI: https://doi.org/10.1016/j.rse.2024.114162

Y. Hu and Z. Sun, “Assessing the Capacities of Different Remote Sensors in Estimating Forest Stock Volume Based on High Precision Sample Plot Positioning and Random Forest Method,” Nature Environment and Pollution Technology, vol. 21, no. 3, pp. 1113–1123, Sep. 2022, doi: 10.46488/NEPT.2022.v21i03.016. DOI: https://doi.org/10.46488/NEPT.2022.v21i03.016

M. Schick, R. Griffin, E. Cherrington, and T. Sever, “Utilizing LiDAR to quantify aboveground tree biomass within an urban university,” Urban For Urban Green, vol. 89, p. 128098, Nov. 2023, doi: 10.1016/j.ufug.2023.128098. DOI: https://doi.org/10.1016/j.ufug.2023.128098

S. Ahlswede et al., “TreeSatAI Benchmark Archive : a multi-sensor, multi-label dataset for tree species classification in remote sensing,” Earth Syst Sci Data, vol. 15, no. 2, pp. 681–695, Feb. 2023, doi: 10.5194/essd-15-681-2023. DOI: https://doi.org/10.5194/essd-15-681-2023

A. R. Jones, R. Raja Segaran, K. D. Clarke, M. Waycott, W. S. H. Goh, and B. M. Gillanders, “Estimating Mangrove Tree Biomass and Carbon Content: A Comparison of Forest Inventory Techniques and Drone Imagery,” Front Mar Sci, vol. 6, Jan. 2020, doi: 10.3389/fmars.2019.00784. DOI: https://doi.org/10.3389/fmars.2019.00784

M. Kganyago, C. Adjorlolo, P. Mhangara, and L. Tsoeleng, “Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture,” Comput Electron Agric, vol. 218, p. 108730, Mar. 2024, doi: 10.1016/j.compag.2024.108730. DOI: https://doi.org/10.1016/j.compag.2024.108730

Z. Zhang et al., “Recent advances in using Chinese Earth observation satellites for remote sensing of vegetation,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 195, pp. 393–407, Jan. 2023, doi: 10.1016/j.isprsjprs.2022.12.006. DOI: https://doi.org/10.1016/j.isprsjprs.2022.12.006

M. M. Fernandes et al., “Land use and land cover changes and carbon stock valuation in the São Francisco river basin, Brazil,” Environmental Challenges, vol. 5, p. 100247, Dec. 2021, doi: 10.1016/j.envc.2021.100247. DOI: https://doi.org/10.1016/j.envc.2021.100247

S. A. Anees et al., “Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region,” Ecol Inform, p. 102732, Jul. 2024, doi: 10.1016/j.ecoinf.2024.102732. DOI: https://doi.org/10.1016/j.ecoinf.2024.102732

V. L. Woltz, C. L. Stagg, K. B. Byrd, L. Windham-Myers, A. S. Rovai, and Z. Zhu, “Above- and Belowground Biomass Carbon Stock and Net Primary Productivity Maps for Tidal Herbaceous Marshes of the United States,” Remote Sens (Basel), vol. 15, no. 6, p. 1697, Mar. 2023, doi: 10.3390/rs15061697. DOI: https://doi.org/10.3390/rs15061697

S. Sharma, S. Dhal, T. Rout, and B. S. Acharya, “Drones and machine learning for estimating forest carbon storage,” Carbon Research, vol. 1, no. 1, p. 21, Oct. 2022, doi: 10.1007/s44246-022-00021-5. DOI: https://doi.org/10.1007/s44246-022-00021-5

M. Battude et al., “Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data,” Remote Sens Environ, vol. 184, pp. 668–681, Oct. 2016, doi: 10.1016/j.rse.2016.07.030. DOI: https://doi.org/10.1016/j.rse.2016.07.030

B. Kamali, S. H. Ahmadi, T. Gaiser, M. Buddeberg, and C. Nendel, “Quest to find compromised spatial and temporal resolutions for integrating remote sensing data with an agro-ecosystem model for grasslands,” International Journal of Applied Earth Observation and Geoinformation, vol. 128, p. 103705, Apr. 2024, doi: 10.1016/j.jag.2024.103705. DOI: https://doi.org/10.1016/j.jag.2024.103705

D. Lu, “The potential and challenge of remote sensing‐based biomass estimation,” International Journal of Remote Sensing , vol. 27, no. 7, pp. 1297–1328, Apr. 2007, doi: 10.1080/01431160500486732. DOI: https://doi.org/10.1080/01431160500486732

R. A. Houghton, F. Hall, and S. J. Goetz, “Importance of biomass in the global carbon cycle,” J Geophys Res Biogeosci, vol. 114, no. G2, pp. 1–13, 2009, doi: 10.1029/2009JG000935. DOI: https://doi.org/10.1029/2009JG000935

Y. Li, M. Li, C. Li, and Z. Liu, “Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms,” Sci Rep, vol. 10, no. 1, p. 9952, Jun. 2020, doi: 10.1038/s41598-020-67024-3.

H. Huang, C. Liu, X. Wang, X. Zhou, and P. Gong, “Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China,” Remote Sens Environ, vol. 221, pp. 225–234, Feb. 2019, doi: 10.1016/j.rse.2018.11.017. DOI: https://doi.org/10.1016/j.rse.2018.11.017

tefanny Patiño, L. N. Suárez, H. J. Andrade, and M. A. Segura, “Captura de Carbono en biomasa en plantaCiones forestales y sistemas agroforestales en armero-guayabal, tolima, Colombia.,” Revista De Investigación Agraria Y Ambiental, vol. 9, no. 2, pp. 121–134, 2018, doi: doi.org/10.22490/21456453.2312.

O. Csillik, P. Kumar, J. Mascaro, T. O’Shea, and G. P. Asner, “Monitoring tropical forest carbon stocks and emissions using Planet satellite data,” Sci Rep, vol. 9, no. 1, p. 17831, Nov. 2019, doi: 10.1038/s41598-019-54386-6. DOI: https://doi.org/10.1038/s41598-019-54386-6

P. da C. Bispo et al., “Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach,” Remote Sens (Basel), vol. 12, no. 17, p. 2685, Aug. 2020, doi: 10.3390/rs12172685. DOI: https://doi.org/10.3390/rs12172685

R. John et al., “Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors,” Remote Sens Environ, vol. 213, pp. 34–48, Aug. 2018, doi: 10.1016/j.rse.2018.05.002. DOI: https://doi.org/10.1016/j.rse.2018.05.002

Y. Bai and M. F. Cotrufo, “Grassland soil carbon sequestration: Current understanding, challenges, and solutions,” Science (1979), vol. 377, no. 6606, Aug. 2022, doi: 10.1126/SCIENCE.ABO2380/ASSET/A73F8411-E3EF-42C8-B327-FE8CFC21CAB5/ASSETS/IMAGES/LARGE/SCIENCE.ABO2380-F4.JPG. DOI: https://doi.org/10.1126/science.abo2380

R. Y. Connolly Wilson and C. A. Corea Siu, “Cuantificación de la captura y almacenamiento de carbono en sistema agroforestal y forestal en seis sitios de cuatro municipios de Nicaragua,” Nicaragua, 2007. Accessed: Nov. 02, 2022. [Online]. Available: https://repositorio.una.edu.ni/1103/

W. Fonseca-González, “Revisión de métodos para el monitoreo de biomasa y carbono vegetal en ecosistemas forestales tropicales,” Revista de Ciencias Ambientales, vol. 51, no. 2, pp. 91–109, 2017, doi: 10.15359/RCA.51-2.5. DOI: https://doi.org/10.15359/rca.51-2.5

N. Oliveira et al., “Beyond biomass production: Enhancing biodiversity while capturing carbon in short rotation coppice poplar plantations,” Science of The Total Environment, vol. 933, p. 172932, Jul. 2024, doi: 10.1016/j.scitotenv.2024.172932. DOI: https://doi.org/10.1016/j.scitotenv.2024.172932

A. Patricia. Yepes Quintero, A. Javier. Duque Montoya, D. Alejandro. Navarrete Encinales, J. Fernando. Phillips Bernal, and M. y E. A. (Colombia) Instituto de Hidrología, “Protocolo para la estimación nacional y subnacional de biomasa-carbono en Colombia,” Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM-. Bogotá D.C., p. 162 p, 2011, Accessed: Nov. 01, 2022. [Online]. Available: http://www.ideam.gov.co/documents/13257/13548/Protocolo+para+la+estimaci%C3%B3n+nacional+y+subnacional_1.pdf/11c9d26b-5a03-4d13-957e-0bcc1af8f108

P. Kumar, H. Y. H. Chen, E. B. Searle, and C. Shahi, “Dynamics of understorey biomass, production and turnover associated with long-term overstorey succession in boreal forest of Canada,” For Ecol Manage, vol. 427, pp. 152–161, Nov. 2018, doi: 10.1016/j.foreco.2018.05.066. DOI: https://doi.org/10.1016/j.foreco.2018.05.066

J. E. Galvis Daza, “Uso de teledetección en la modelación del carbono de la biomasa herbácea en terrenos rehabilitados por la empresa Drummond Ltda en el departamento del Cesar-Colombia.,” Universidad de Manizales, Manizales, 2022. Accessed: Jan. 20, 2025. [Online]. Available: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/6332

L. Wan et al., “Optimizing grazing exclusion duration for carbon sequestration in grasslands: Incorporating temporal heterogeneity of aboveground biomass and soil organic carbon,” Science of The Total Environment, vol. 927, p. 172006, Jun. 2024, doi: 10.1016/j.scitotenv.2024.172006. DOI: https://doi.org/10.1016/j.scitotenv.2024.172006

P. K. Pati, P. Kaushik, M. L. Khan, and P. K. Khare, “Allometric equations for biomass and carbon stock estimation of small diameter woody species from tropical dry deciduous forests: Support to REDD+,” Trees, Forests and People, vol. 9, p. 100289, Sep. 2022, doi: 10.1016/j.tfp.2022.100289. DOI: https://doi.org/10.1016/j.tfp.2022.100289

D. Kachamba, T. Eid, and T. Gobakken, “Above- and Belowground Biomass Models for Trees in the Miombo Woodlands of Malawi,” Forests, vol. 7, no. 2, p. 38, Feb. 2016, doi: 10.3390/f7020038. DOI: https://doi.org/10.3390/f7020038

T. M. Basuki, P. E. van Laake, A. K. Skidmore, and Y. A. Hussin, “Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests,” For Ecol Manage, vol. 257, no. 8, pp. 1684–1694, Mar. 2009, doi: 10.1016/j.foreco.2009.01.027. DOI: https://doi.org/10.1016/j.foreco.2009.01.027

K. I. Paul et al., “Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale,” Glob Chang Biol, vol. 22, no. 6, pp. 2106–2124, Jun. 2016, doi: 10.1111/gcb.13201. DOI: https://doi.org/10.1111/gcb.13201

O. A. Macave et al., “Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique,” Forests, vol. 13, no. 2, p. 311, Feb. 2022, doi: 10.3390/f13020311. DOI: https://doi.org/10.3390/f13020311

R. J. Williams, A. Zerihun, K. D. Montagu, M. Hoffman, L. B. Hutley, and X. Chen, “Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations,” Aust J Bot, vol. 53, no. 7, p. 607, 2005, doi: 10.1071/BT04149. DOI: https://doi.org/10.1071/BT04149

Y. Chen, T.-R. Yang, Y.-H. Hsu, J. A. Kershaw, and D. Prest, “Application of big BAF sampling for estimating carbon on small woodlots,” For Ecosyst, vol. 6, no. 1, p. 13, Dec. 2019, doi: 10.1186/s40663-019-0172-4. DOI: https://doi.org/10.1186/s40663-019-0172-4

J. J. Torres-Torres, V. E. Mena-Mosquera, and E. Álvarez-Dávila, “Carbono aéreo almacenado en tres bosques del Jardín Botánico del Pacífico, Chocó, Colombia,” ENTRAMADO, vol. 13, no. 1, pp. 200–209, 2017, doi: 10.18041/entramado.2017v13n1.25110. DOI: https://doi.org/10.18041/entramado.2017v13n1.25110

M. W. van Rooyen et al., “Carbon of Chaillu forests based on a phytosociological analysis in Republic of Congo, more than meets the eye?,” Afr J Ecol, vol. 61, no. 1, pp. 48–63, Mar. 2023, doi: 10.1111/aje.13086. DOI: https://doi.org/10.1111/aje.13086

L. O. R. Pinto, C. R. de Souza, M. de C. N. S. Terra, J. M. de Mello, N. Calegário, and F. W. Arcebi Júnior, “Optimal plot size for carbon-diversity sampling in tropical vegetation,” For Ecol Manage, vol. 482, p. 118778, Feb. 2021, doi: 10.1016/j.foreco.2020.118778. DOI: https://doi.org/10.1016/j.foreco.2020.118778

C. Li, Z. Yu, H. Dai, X. Zhou, and M. Zhou, “Effect of sample size on the estimation of forest inventory attributes using airborne LiDAR data in large-scale subtropical areas,” Ann For Sci, vol. 80, no. 1, p. 40, Oct. 2023, doi: 10.1186/s13595-023-01209-4. DOI: https://doi.org/10.1186/s13595-023-01209-4

S. Adnan, M. Maltamo, D. A. Coomes, and R. Valbuena, “Effects of plot size, stand density, and scan density on the relationship between airborne laser scanning metrics and the Gini coefficient of tree size inequality,” Canadian Journal of Forest Research, vol. 47, no. 12, pp. 1590–1602, Dec. 2017, doi: 10.1139/cjfr-2017-0084. DOI: https://doi.org/10.1139/cjfr-2017-0084

T. Huynh, D. J. Lee, G. Applegate, and T. Lewis, “Field methods for above and belowground biomass estimation in plantation forests,” MethodsX, vol. 8, p. 101192, 2021, doi: 10.1016/j.mex.2020.101192. DOI: https://doi.org/10.1016/j.mex.2020.101192

M. Henry et al., “Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations,” Silva Fennica, vol. 45, no. 3B, 2011, doi: 10.14214/sf.38. DOI: https://doi.org/10.14214/sf.38

G. Avalos, M. Cambronero, and C. Alvarez-Vergnani, “Allometric Models to Estimate Carbon Content in Arecaceae Based on Seven Species of Neotropical Palms,” Frontiers in Forests and Global Change, vol. 5, Jul. 2022, doi: 10.3389/ffgc.2022.867912. DOI: https://doi.org/10.3389/ffgc.2022.867912

S. Abbas, M. S. Wong, J. Wu, N. Shahzad, and S. Muhammad Irteza, “Approaches of Satellite Remote Sensing for the Assessment of Above-Ground Biomass across Tropical Forests: Pan-tropical to National Scales,” Remote Sens (Basel), vol. 12, no. 20, p. 3351, Oct. 2020, doi: 10.3390/rs12203351. DOI: https://doi.org/10.3390/rs12203351

A. Saukkola et al., “Predicting Forest Inventory Attributes Using Airborne Laser Scanning, Aerial Imagery, and Harvester Data,” Remote Sens (Basel), vol. 11, no. 7, p. 797, Apr. 2019, doi: 10.3390/rs11070797. DOI: https://doi.org/10.3390/rs11070797

N. Zeng et al., “The utility of fusing multi-sensor data spatio-temporally in estimating grassland aboveground biomass in the three-river headwaters region of China,” Int J Remote Sens, vol. 41, no. 18, pp. 7068–7089, Sep. 2020, doi: 10.1080/01431161.2020.1752411. DOI: https://doi.org/10.1080/01431161.2020.1752411

X. Yuan, L. Li, X. Tian, G. Luo, and X. Chen, “Estimation of above-ground biomass using MODIS satellite imagery of multiple land-cover types in China,” Remote Sensing Letters, vol. 7, no. 12, pp. 1141–1149, Dec. 2016, doi: 10.1080/2150704X.2016.1219458. DOI: https://doi.org/10.1080/2150704X.2016.1219458

M. A. Perea-Ardila, H. J. Andrade-Castañeda, and M. A. Segura-Madrigal, “Estimación de Biomasa Aérea y Carbono con Teledetección en Bosques Alto-Andinos de Boyacá, Colombia. Estudio de caso: Santuario de Fauna y Flora Iguaque,” Revista Cartográfica, no. 102, pp. 91–123, Jan. 2021, doi: 10.35424/rcarto.i102.821. DOI: https://doi.org/10.35424/rcarto.i102.821

Y. Li, M. Li, C. Li, and Z. Liu, “Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms,” Sci Rep, vol. 10, no. 1, p. 9952, Jun. 2020, doi: 10.1038/s41598-020-67024-3. DOI: https://doi.org/10.1038/s41598-020-67024-3

P. M. López Serrano, D. J. Vega Nieva, H. Ramírez Aldaba, E. García Montiel, and J. J. Corral Rivas, “Estimación de parámetros forestales mediante datos de Sentinel 2A en Pueblo Nuevo, Durango,” Rev Mex Cienc For, vol. 12, no. 68, pp. 81–106, Nov. 2021, doi: 10.29298/rmcf.v12i68.1075. DOI: https://doi.org/10.29298/rmcf.v12i68.1075

D. Wang et al., “Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 85, p. 101986, Mar. 2020, doi: 10.1016/j.jag.2019.101986. DOI: https://doi.org/10.1016/j.jag.2019.101986

T. Dube and O. Mutanga, “The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 119, pp. 415–425, Sep. 2016, doi: 10.1016/j.isprsjprs.2016.06.017. DOI: https://doi.org/10.1016/j.isprsjprs.2016.06.017

M. Kamal, M. F. Hidayatullah, P. Mahyatar, and S. M. Ridha, “Estimation of aboveground mangrove carbon stocks from WorldView-2 imagery based on generic and species-specific allometric equations,” Remote Sens Appl, vol. 26, p. 100748, Apr. 2022, doi: 10.1016/j.rsase.2022.100748. DOI: https://doi.org/10.1016/j.rsase.2022.100748

Y. Hirata, R. Tabuchi, P. Patanaponpaiboon, S. Poungparn, R. Yoneda, and Y. Fujioka, “Estimation of aboveground biomass in mangrove forests using high-resolution satellite data,” Journal of Forest Research, vol. 19, no. 1, pp. 34–41, Feb. 2014, doi: 10.1007/s10310-013-0402-5. DOI: https://doi.org/10.1007/s10310-013-0402-5

P. Gonzalez, G. P. Asner, J. J. Battles, M. A. Lefsky, K. M. Waring, and M. Palace, “Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California,” Remote Sens Environ, vol. 114, no. 7, pp. 1561–1575, Jul. 2010, doi: 10.1016/j.rse.2010.02.011. DOI: https://doi.org/10.1016/j.rse.2010.02.011

L. S. Galvão, A. Almeida de Souza, and F. M. Breunig, “A hyperspectral experiment over tropical forests based on the EO-1 orbit change and PROSAIL simulation,” GIsci Remote Sens, vol. 57, no. 1, pp. 74–90, Jan. 2020, doi: 10.1080/15481603.2019.1668595. DOI: https://doi.org/10.1080/15481603.2019.1668595

E. Halme, P. Pellikka, and M. Mõttus, “Utility of hyperspectral compared to multispectral remote sensing data in estimating forest biomass and structure variables in Finnish boreal forest,” International Journal of Applied Earth Observation and Geoinformation, vol. 83, p. 101942, Nov. 2019, doi: 10.1016/j.jag.2019.101942. DOI: https://doi.org/10.1016/j.jag.2019.101942

A. D. Jacon, L. S. Galvão, R. Dalagnol, and J. R. dos Santos, “Aboveground biomass estimates over Brazilian savannas using hyperspectral metrics and machine learning models: experiences with Hyperion/EO-1,” GIsci Remote Sens, vol. 58, no. 7, pp. 1112–1129, Oct. 2021, doi: 10.1080/15481603.2021.1969630. DOI: https://doi.org/10.1080/15481603.2021.1969630

L. Wan, Y. Lin, H. Zhang, F. Wang, M. Liu, and H. Lin, “GF-5 Hyperspectral Data for Species Mapping of Mangrove in Mai Po, Hong Kong,” Remote Sens (Basel), vol. 12, no. 4, p. 656, Feb. 2020, doi: 10.3390/rs12040656. DOI: https://doi.org/10.3390/rs12040656

J. G. Masek, D. J. Hayes, M. Joseph Hughes, S. P. Healey, and D. P. Turner, “The role of remote sensing in process-scaling studies of managed forest ecosystems,” For Ecol Manage, vol. 355, pp. 109–123, Nov. 2015, doi: 10.1016/j.foreco.2015.05.032. DOI: https://doi.org/10.1016/j.foreco.2015.05.032

C. Senf, “Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics,” Ecosystems, vol. 25, no. 8, pp. 1719–1737, Dec. 2022, doi: 10.1007/s10021-022-00777-2. DOI: https://doi.org/10.1007/s10021-022-00777-2

L. Gao et al., “Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 159, pp. 364–377, Jan. 2020, doi: 10.1016/j.isprsjprs.2019.11.018. DOI: https://doi.org/10.1016/j.isprsjprs.2019.11.018

Y. Guo et al., “Spatiotemporal patterns of urban forest carbon sequestration capacity: Implications for urban CO2 emission mitigation during China’s rapid urbanization,” Science of The Total Environment, vol. 912, p. 168781, Feb. 2024, doi: 10.1016/j.scitotenv.2023.168781. DOI: https://doi.org/10.1016/j.scitotenv.2023.168781

S. Saleem, J. A. Rather, S. Ahmed, S. Mushtaq, R. Ahmed, and I. H. Malik, “Above Ground Biomass Estimation for Alpine Grasslands of Kashmir Himalayas Using Remote Sensing and Field-Data,” Rangel Ecol Manag, Jul. 2024, doi: 10.1016/j.rama.2024.06.001. DOI: https://doi.org/10.1016/j.rama.2024.06.001

Y. Zhou et al., “Spatiotemporal fusion of multi-source remote sensing data for estimating aboveground biomass of grassland,” Ecol Indic, vol. 146, p. 109892, Feb. 2023, doi: 10.1016/j.ecolind.2023.109892. DOI: https://doi.org/10.1016/j.ecolind.2023.109892

A. R. Huete, “A soil-adjusted vegetation index (SAVI),” Remote Sens Environ, vol. 25, no. 3, pp. 295–309, Aug. 1988, doi: 10.1016/0034-4257(88)90106-X. DOI: https://doi.org/10.1016/0034-4257(88)90106-X

G. Rondeaux, M. Steven, and F. Baret, “Optimization of soil-adjusted vegetation indices,” Remote Sens Environ, vol. 55, no. 2, pp. 95–107, 1996, doi: 10.1016/0034-4257(95)00186-7. DOI: https://doi.org/10.1016/0034-4257(95)00186-7

C. Pérez Gutiérrez, C. (coord. ) Pérez Gutiérrez, and Á. L. (coord. ) Muñoz Nieto, “Introducción a la Teledetección Espacial,” Teledetección : nociones y aplicaciones, pp. 1–15, 2002, Accessed: Nov. 02, 2022. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=1010787

O. Mutanga, A. Masenyama, and M. Sibanda, “Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 198, pp. 297–309, Apr. 2023, doi: 10.1016/j.isprsjprs.2023.03.010. DOI: https://doi.org/10.1016/j.isprsjprs.2023.03.010

N. E. Young, R. S. Anderson, S. M. Chignell, A. G. Vorster, R. Lawrence, and P. H. Evangelista, “A survival guide to Landsat preprocessing,” Ecology, vol. 98, no. 4, pp. 920–932, Apr. 2017, doi: 10.1002/ecy.1730. DOI: https://doi.org/10.1002/ecy.1730

T. Ma et al., “Development of forest aboveground biomass estimation, its problems and future solutions: A review,” Ecol Indic, vol. 159, p. 111653, Feb. 2024, doi: 10.1016/j.ecolind.2024.111653. DOI: https://doi.org/10.1016/j.ecolind.2024.111653

W. Zhang, H. Shao, H. Sun, W. Zhang, and Q. Yan, “Optimizing Carbon Sequestration in Forest Management Plans Using Advanced Algorithms: A Case Study of Greater Khingan Mountains,” Forests, vol. 14, no. 9, p. 1785, Sep. 2023, doi: 10.3390/f14091785. DOI: https://doi.org/10.3390/f14091785

H. Han, R. Wan, and B. Li, “Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China,” Remote Sens (Basel), vol. 14, no. 1, p. 176, Dec. 2021, doi: 10.3390/rs14010176. DOI: https://doi.org/10.3390/rs14010176

I. Peláez, “Modelos de regresión: lineal simple y regresión logística,” Seden, vol. 14, pp. 195–214, 2016.

J. Chen et al., “Improving forest age prediction performance using ensemble learning algorithms base on satellite remote sensing data,” Ecol Indic, p. 112327, Jul. 2024, doi: 10.1016/j.ecolind.2024.112327. DOI: https://doi.org/10.1016/j.ecolind.2024.112327

A. Tariq et al., “Modelling, mapping and monitoring of forest cover changes, using support vector machine, kernel logistic regression and naive bayes tree models with optical remote sensing data,” Heliyon, vol. 9, no. 2, p. e13212, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13212. DOI: https://doi.org/10.1016/j.heliyon.2023.e13212

S. Cheng, B. A. Konomi, J. L. Matthews, G. Karagiannis, and E. L. Kang, “Hierarchical Bayesian nearest neighbor co-kriging Gaussian process models; an application to intersatellite calibration,” Spat Stat, vol. 44, p. 100516, Aug. 2021, doi: 10.1016/j.spasta.2021.100516. DOI: https://doi.org/10.1016/j.spasta.2021.100516

A. Dutta Roy et al., “Remote sensing-based mangrove blue carbon assessment in the Asia-Pacific: A systematic review,” Science of The Total Environment, vol. 938, p. 173270, Aug. 2024, doi: 10.1016/j.scitotenv.2024.173270. DOI: https://doi.org/10.1016/j.scitotenv.2024.173270

J. E. Galvis Daza, D. C. Manco-Jaraba, and J. F. Mejía Correa, “Modelación del carbono contenido por la biomasa aérea en terrenos rehabilitados por la empresa Drummond ltda en el departamento del Cesar-Colombia, a partir de teledetección con imágenes ópticas sentinel-2,” Ingeniare. Revista chilena de ingeniería, vol. 31, Apr. 2024, doi: 10.4067/S0718-33052023000100245. DOI: https://doi.org/10.4067/S0718-33052023000100245

L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo, “Estimation of biomass in wheat using random forest regression algorithm and remote sensing data,” Crop J, vol. 4, no. 3, pp. 212–219, Jun. 2016, doi: 10.1016/j.cj.2016.01.008. DOI: https://doi.org/10.1016/j.cj.2016.01.008

J. Fernández-Habas et al., “Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by Random Forest and PLS regressions,” Comput Electron Agric, vol. 192, p. 106614, Jan. 2022, doi: 10.1016/J.COMPAG.2021.106614. DOI: https://doi.org/10.1016/j.compag.2021.106614

M. Chen, X. Qiu, W. Zeng, and D. Peng, “Combining Sample Plot Stratification and Machine Learning Algorithms to Improve Forest Aboveground Carbon Density Estimation in Northeast China Using Airborne LiDAR Data,” Remote Sens (Basel), vol. 14, no. 6, p. 1477, Mar. 2022, doi: 10.3390/rs14061477. DOI: https://doi.org/10.3390/rs14061477

F. Li, T. Yigitcanlar, M. Nepal, K. Nguyen, and F. Dur, “Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework,” Sustain Cities Soc, vol. 96, p. 104653, Sep. 2023, doi: 10.1016/j.scs.2023.104653. DOI: https://doi.org/10.1016/j.scs.2023.104653

Citations

Crossref
Scopus
Europe PMC
OJS System - Metabiblioteca |