Filtering of EMG signals based on digital filters for the control of a bionic upper-limb prosthesis

Filtrado de señales EMG basado en filtros digitales para el control de una prótesis biónica transradial

Main Article Content

Camilo Andres Solano-Rico
Oscar Javier Suarez-Sierra
Jesus Alfonso Medrano-Hermosillo
Aldo Pardo-Garcia
Abraham Efraím Rodríguez-Mata
Abstract

Electromyography signal filtering (EMG) is essential for controlling bionic prostheses, allowing the detection and analysis of muscle biopotentials. Traditionally, physical filters have been used, but they have limitations regarding precision and complexity. This paper aims to improve the accuracy at the time of EMG signal processing using digital filters. Surface electrodes with conductive gel were used to capture the EMG signals. The raw signals were amplified using an instrumentation amplifier with a high gain, followed by a first-order filtering of high and low passes. The final stage included rectifying the signal to obtain exclusively positive values. Several digital filters were evaluated, including filters based on moving average and exponential moving average filters, with the circuits of different filters ultimately implemented in the bionic upper-limb prosthesis.

Keywords

Downloads

Download data is not yet available.

Article Details

References

A. Chillagano Tipán, “Diseño y construcción de un prototipo de prótesis biónica para amputación transradial controlada por bio sensores musculares”, Universidad Politécnica Salesiana, Quito, Ecuador, 2022.

J. Artal Sevil, F. Pérez Cebolla, A. Acón y J. Domínguez Navarro, “Control de una mano biónica basado en redes neuronales y técnicas de reconocimiento de gestos mediante múltiples sensores EMG”, XIV Teaching and Learning of Electronics, pp. 241-248, 2020.

O. Corredor, L. Pedraza y C. Hernández, “Diseño e implementación de filtros digitales”, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, Vis. Electron., vol. 3, no. 1, pp. 55–66, jun. 2009.

J. Ning, K. Englehart, y P. Parker. “Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal.” IEEE Transactions on Biomedical Engineering vol. 4, pp. 1070-1080, 2008.

F. Anders, et. al. “Control of upper limb prostheses: Terminology and proportional myoelectric control—A review.” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 10, pp. 663-677, 2012.

H. Zhang, X. Guan, Y. Ding y C. Liu, “Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation”, Journal of Cleaner Production, vol. 183, pp. 1207-1215, 2018.

J. Uellendahl. “Experience fitting partial hand prostheses using prodigits.”, Univ. of New Brunswick's MyoElectric Controls/Powered Prosthetics Symp. Proc., 2008.

P. Parker y R. Scott. “Myoelectric control of prostheses.”, Critical reviews in biomedical engineering vol. 4, pp. 283-310, 1986.

X. Wang, B. Zhang y Y. Yang. “Active SVM-based relevance feedback using multiple classifiers ensemble and features reweighting”. Engineering Applications of Artificial Intelligence, vol. 26, pp. 368-381, 2013.

K. Xing et al. “A real-time EMG pattern recognition method for virtual myoelectric hand control.” Neurocomputing, pp. 345-355, 2014.

J. Carrillo-Gómez, C. Duran-Acevedo, y R. Garcia-Rico, “Discriminación de bacterias en agua potable a través de una nariz electrónica y un equipo de extracción de volátiles”, RCTA, vol. 1, no. 33, pp. 155–165, 2019.

J. González, “Robótica y prótesis inteligentes”, Revista Digital Universitaria, vol. 6, no. 1 pp. 11–15, 2004.

J. Sierra, B. Medina, L. Rodríguez, C. Pachón, y M. Barrios, “Desarrollo e implementación de tecnologías biomédicas para la telerehabilitación funcional”, RCTA, vol. 2, no. 34, pp. 137–143, 2019.

A. Arché-Núñez, et al. “Bio-potential noise of dry printed electrodes: physiology versus the skin-electrode impedance.” Physiological Measurement vol. 9, no. 44, 2023.

E. Guzmán Muñoz y G. Méndez Rebolledo. “Electromiografía en las ciencias de rehabilitación”, Revista Salud Uninorte, vol. 34, no. 3, pp. 753-765, 2018.

R. Madou, et al. “Señales bioeléctricas del cuerpo: de la ingeniería electrónica a la performance artística.”, Cuerpo, Máquina, Acción, vol. 4, 2020.

E. Rincón Castrillo, J. García Pabón, y J. Bermúdez Santaella, “Estado del arte de las celdas de combustible”, RCTA, vol. 1, no. 33, pp. 36–49, 2019.

L. Gila, A. Malanda, I. Rodríguez Carreño, J. Rodríguez Falce y J. Navallas. “Métodos de procesamiento y análisis de señales electromiográficas”, Anales Sis San Navarra, vol.32 pp. 27-43, 2009.

N. Dugarte, R. Medina, R. Rojas y E. Dugarte. “Bioamplificador multicanal para la adquisición de la señal ECGAR, del prototipo DIGICARDIAC”. Revista del Instituto Nacional de Higiene Rafael Rangel, vol. 45, pp. 10-29, no. 2, 2014.

C. Herrera Ramírez, A. Moreno Pérez, L. Oyarzabal y J. Herrera Ramirez. “Amplificador de biopotenciales para electrorretinografía”. Congreso Internacional sobre Innovación y Desarrollo Tecnológico, CIMAV, México, 2010.

A. Veca, R. Lage, y M. Ruiz Noguera. “Filtros analógicos: clásicos, basados en Capacitor Conmutado y con FPAA”. Tesis doctoral, Ciudad Autónoma de Buenos Aires, 2014. ISBN 978-987-33-6154-8.

S. Ma, B. Lv, C. Lin, X. Sheng y X. Zhu, “EMG Signal Filtering Based on Variational Mode Decomposition and Sub-Band Thresholding”, IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 1, pp. 47-58, Jan. 2021.

C. Solano Rico, O. Suarez Sierra, y J. Medrano Hermosillo, “Diseño ergonómico de una prótesis biónica para miembro superior controlada por señales electromiográficas”, RCTA, vol. 1, n.º 43, pp. 99–109, mar. 2024.

Y. Li, et al. “Application of an EMG interference filtering method to dynamic ECGs based on an adaptive wavelet-Wiener filter and adaptive moving average filter”. Biomedical Signal Processing and Control, vol. 72, pp. 103-344, 2022.

D. Farina y R. Merletti. “Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions”. Journal of Electromyography and Kinesiology, vol. 5, no. 10, 2000.

Most read articles by the same author(s)

OJS System - Metabiblioteca |