Super-current profile in an Al flat at zero magnetic field

Perfil de súper-corrientes en una lámina de Al a campo magnético cero

Main Article Content

Fernando Duran-Flórez
Miryam Rincón-Joya
José Barba-Ortega
Abstract

Objective: This paper presents numerical results of computational simulations of the Supercurrent profile in a superconducting aluminum flat at low temperature, aiming to be analyzed for the fabrication of nanostructures for possible applications in nanoelectronics devices. Methodology: Time dependent Ginzburg-Landau equations were solved with the popular Link variable method for aluminum flat with a direct applied current and in absence of external applied magnetic field. Results: Kinematics vortex pairs emerge of the middle part of the sample and a subsequent annihilation in a determined value for the applied current. The periodic vortex kinematic pair nucleation leads to the appearance of temporal voltage oscillations. At higher current, the superconducting state is completely destroyed and the sample behaves as a ohmic metal. At lower current a low resistance is present due to metallic contact where the current is applied. Conclusion: The appearance of vortex-anti-vortex pairs destroys the superconducting state in the middle of the sheet. Its nature is determined by the supercurrent profile within the sample. Kinematic vortex shows an elongated geometry causing a drastic increase in local resistance of the material.

Keywords

Downloads

Download data is not yet available.

Article Details

Author Biographies (SEE)

Fernando Duran-Flórez, Universidad Pontificia Bolivariana, Bucaramanga.

Magister en Fisica.

Miryam Rincón-Joya, Universidad Nacional de Colombia, Bogotá.

Doctorado en Física, Departamento de Física.

José Barba-Ortega, Universidad Nacional de Colombia, Bogotá.

Doctorado en Física, Departamento de Física.
References

J. Van de Vondel, C. C. de Souza, B. Y. Zhu, et al. “Vortex Rectification Effects in Films with Periodic Asymmetric Pinning”, Phys. Rev. Lett., vol. 94, no. 5, pp. 057003, 2005.

K. Yu, T. W. Heitmann, C. Song, et al. “Asymmetric weak-pinning superconducting channels: Vortex ratchets”, Phys. Rev. B, vol. 76, no. 22, pp. 220507, 2007.

K. Yu, M. B. S. Hesselberth, P. H. Kes and B. L. T. Plourde. “Vortex dynamics in superconducting channels with periodic constrictions”, Phys. Rev. B, vol 81, pp. 184503, 2010.

M. B. Hastings, C. J. O. Reichhardt and C. Reichhardt. “Ratchet Cellular Automata”, Phys. Rev. Lett., vol 90, no. 24, pp. 247004, 2003.

T. Puig, E. Rosseel, M. Baert, et al. “Stable vortex configurations in superconducting 2×2 antidot clusters”, Appl. Phys. Lett., vol 70, pp. 3155, 1997.

G. Karapetrov, V. Yefremenko, G. Mihajlovic, et al. “Evidence of vortex jamming in Abrikosov vortex flux flow regime”, Phys. Rev. B, vol. 86, no. 5, pp. 054524, 2012.

G. Berdiyorov, K. Harrabi, F. Oktasendra, et al. “Dynamics of current-driven phase-slip centers in superconducting strips”, Phys.Rev. B, vol. 90, no. 5, pp. 054506, 2014.

F. Rogeri, R. Zadorosny, P. N. LisboaFilho, et al. “Magnetic field profile of a mesoscopic SQUID-shaped superconducting film”, Supercond. Sci. Technol., vol. 26, no. 7, pp. 075005, 2013.

R. I. Rey, A. R. Alvarez, C. Carballeira, et al. “Measurements of the superconducting fluctuations in optimally doped BaFe2 −xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach”, Supercond. Sci. Technol., vol. 27, no. 7, pp. 07500, 2014.

P. J. Pereira, V. V. Moshchalkov and L. F. Chibotaru. “Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors”. J. Phys. Conf. Ser., vol. 490, pp. 012220, 2014.

J. I. Martin. “Flux Pinning in a Superconductor by an Array of Submicrometer Magnetic Dots”, Phys. Rev. Lett., vol. 79, no. 10, pp. 1929, 1997.

D. J. Morgan and J. B. Ketterson. “Asymmetric Flux Pinning in a Regular Array of Magnetic Dipoles”, Phys. Rev. Lett., vol. 80, no.16, pp. 3614, 1998.

M. V. Milosevic, G. R. Berdiyorov and F. M. Peeters, Phys. “Mesoscopic Field and Current Compensator Based on a Hybrid Supercond uctor-Ferromagnet Structure”, Rev. Lett., vol. 95, no. 14, pp. 147004, 2005.

G. R. Berdiyorov. “Effect of surface functionalization on the electronic transport properties of Ti3 C2MXene”, Eurp. Phys. Lett., vol. 111, no. 6, pp. 67002, 2015.

G. R. Berdiyorov, K. Harrabi, J. P. Maneval and F. M. Peeters. “Effect of pinning on the response of superconducting strips to an external pulsed current”, Supercond. Sci. Technol, vol. 28, no. 2, pp. 25004, 2015.

G. R. Berdiyorov, M. V. Milosevic, F. M. Peeters and D. Y. Vodolazov. “Kinematic vortex-antivortex lines in strongly driven superconducting stripes”, Phys. Rev. B, 79, no. 18, pp. 184506, 2009.

P. Sanchez, J. Albino Aguiar and D. Dominguez. “Behavior of the flux-flow resistivity in mesoscopic superconductors”, Physica C, vol. 503, pp. 120-122, 2014.

D. Gropp, H. G. Kaper, G. K. Leaf, et al. “Numerical simulation of vortex dynamics in type-II superconductors”, J. Comput. Phys., Vol. 123, no. 2, pp. 254-266, 1996.

C. P. Poole Jr. “Superconductivity”, 2nd, Elsevier Academic Press, The Netherlands, 2007.

OJS System - Metabiblioteca |