Análisis de fallas en motor Diésel monocilíndrico SK-MDF300 a través de las emisiones acústicas
Failure analysis in single-cylinder diesel engine SK-MDF300 through acoustic emissions
Contenido principal del artículo
En el presente estudio, el diagnóstico de un motor Diesel de un solo cilindro se evalúa a través de las emisiones acústicas. La señal acústica de cuatro lugares del motor, que incluyen el bloque del motor, el sistema de inyección, el depósito de combustible y la bomba de combustible, se analiza mediante la técnica de la raíz cuadrada media. El análisis se lleva a cabo a una velocidad fija de 3200 rpm y un porcentaje de carga del 20%, 40% y 80%. Los resultados obtenidos muestran que la comparación de las señales acústicas de dos períodos de tiempo diferentes permite evaluar rápida y fácilmente los cambios en las condiciones del motor. La sensibilidad de las emisiones acústicas permite identificar diferentes condiciones de carga del motor. El estudio de la señal acústica en diferentes ubicaciones del motor permitió identificar el sistema de inyección como una de las principales áreas propensas a fallar o a cambios en su condición de funcionamiento. Además, el método de análisis basado en el RMS de la señal acústica permitió identificar claramente los fallos en el sistema de inyección. Lo anterior se pudo realizar comparando las señales y analizando la variabilidad de la señal. De esta manera, se demuestra la capacidad de las emisiones acústicas para realizar un diagnóstico rápido y de bajo costo, sin necesidad de realizar modificaciones físicas relevantes en el motor.
Descargas
Detalles del artículo
S. Wu, D. Zhou, and W. Yang, Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations, Applied Energy, vol. 254, p. 113661, 2019.
S. Wu, W. Yang, H. Xu, and Y. Jiang, Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model, Applied Energy, vol. 253, p. 113609, 2019.
F. R. Ismagilov, V. Y. Vavilov, I. V. Zarembo, A. H. Miniyarov, and V. V. Ayguzina, Multidisciplinary design of electrical motors for fuel pumps of perspective aircrafts by using genetic algorithms, International Review of Electrical Engineering (IREE), vol. 13, no.6, pp. 452–460, 2018.
M. Abdel-Warth, M. Abdel-Akher, M. M. Aly, and A. Eid, Quasi-Static time-series analysis of congested transmission networks with intermittent wind power penetration, International Review of Electrical Engineering (IREE), vol. 12, no.3, pp. 237–249, 2017.
O. O. Varlamov, Wi!Mi expert system shell as the novel tool for building knowledge-based systems with linear computational complexity, International Review of Automatic Control (IREACO), vol. 11, no.6, pp. 314–325, 2018.
W. E. S. Ocaña, A. M. Abata, E. S. Jácome, and M. V. M. Mora, Distributed systems and industrial communication networks with the internet of things, aimed at Industry 4.0, International Review of Automatic Control (IREACO), vol. 12, no.5, pp. 229–235, 2019.
S. Wu, J. Akroyd, S. Mosbach, G. Brownbridge, O. Parry, V. Page, and M. Kraft, Efficient simulation and auto-calibration of soot particle processes in Diesel engines, Applied Energy, vol. 262, p. 114484, 2020.
Y. Zhang, J. Mao, and Y.B. Xie, Engine Wear Monitoring with OLVF, Tribology Transactions, vol. 54, pp. 201–207, 2011.
A. P. Carlucci, F. F. Chiara, and D. Laforgia, Analysis of the relation between injection parameter variation and block vibration of an internal combustion diesel engine, Journal of Sound and Vibration, vol. 295, pp. 141–164, 2006.
A. G. Beattie, Acoustic emission, principles and instrumentation. 1983.
D. Mba, and R.B.K.N. Rao, Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: Bearings, pumps, gearboxes, engines, and rotating structures, Shock and Vibration Digest, vol. 38, pp. 3–16, 2006.
S. Delvecchio, P. Bonfiglio, and F. Pompoli, Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques, Mechanical Systems and Signal Processing, vol. 99, pp. 661–683, 2018.
W. Wu, T. R. Lin, and A. C. C. Tan, Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines, Mechanical Systems and Signal Processing, vol. 64–65, pp. 479–497, 2015.
T.L. Fog, L.K. Hansen, J. Larsen, H.S. Hansen, L. Madsen, L. B., P. Sorensen, and P.S. Pedersen, On condition monitoring of exhaust valves in marine diesel engines, in Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 1999, pp. 554–563.
J. D. Gill, R. L. Reuben, and J. Steel, A study of small HSDI diesel engine fuel injection equipment faults using acoustic emission, Journal of Acoustic Emission(USA), vol. 18, pp. 211–216, 2000.
M. El-Ghamry, J. A. Steel, R. L. Reuben, and T. L. Fog, Indirect measurement of cylinder pressure from diesel engines using acoustic emission, Mechanical Systems and Signal Processing, vol. 19, pp. 751–765, 2005.
A. Bejger, The application of acoustic emission signal to the investigation of diesel engine fuel injection systems, Problemy Eksploatacji, vol. 3, pp. 17–23, 2007.
W. Li, F. Gu, A. D. Ball, A. Y. T. Leung, and C. E. Phipps, A Study of the noise from diesel engines using the independent component analysis, Mechanical Systems and Signal Processing, vol. 15, pp. 1165–1184, 2001.
J. Drouet, Q. Leclère, and E. Parizet, Experimental modeling of Wiener filters estimated on an operating diesel engine, Mechanical Systems and Signal Processing, vol. 50–51, pp. 646–658, 2015.
W. Wu, The detection of incipient faults in small multi-cylinder diesel engines using multiple acoustic emission sensors, Queensland University of Technology, 2014.
A. Parlak, H. Yaşar, C. Haşimoglu, and A. Kolip, The effects of injection timing on NOx emissions of a low heat rejection indirect diesel injection engine, Applied Thermal Engineering, vol. 25, pp. 3042–3052, 2005.