Estudio de la influencia de las propiedades del material en el proceso de conversión de energía de generadores termoeléctricos para aplicaciones de recuperación de calor

Palabras clave: Eficiencia, Conversión energética, Propiedades de material, Potencia de salida, Generadores termoeléctricos

Resumen

En el presente estudio, se propone un análisis del efecto de las propiedades del material en el proceso de conversión de energía de generadores termoeléctricos (GTE). En el desarrollo del estudio, se analizaron dos materiales cuyas propiedades varían con respecto a la temperatura (Bi0.4Sb1.6Te3 y Cu11NiSb4S13) y un material de propiedades constantes (Bi2Te3). A través del proceso de simulación, cada material se sometió a variaciones de temperatura para monitorear su efecto en variables tales como la generación eléctrica, flujo de calor y eficiencia de conversión energética. Los resultados obtenidos mostraron que, al considerar la dependencia de la temperatura del material se obtienen estimaciones mayores o menores dependiendo en el nivel de temperatura experimentado por el GTE. De manera general, el material Bi2Te3 incrementó la generación de electricidad y la eficiencia hasta en un 35 % comparado al material Bi0.4Sb1.6Te3. De tal forma, se demostró que considerando la variabilidad del material del GTE es esencial para obtener resultados realistas del proceso de conversión energético. Por otro lado, el flujo de calor producido por el efecto de Fourier mostró el mayor impacto en la generación de electricidad del GTE. Dentro de los materiales con propiedades variables, el material Bi0.4Sb1.6Te3 incrementó la eficiencia de conversión hasta en un 25% en comparación con el Cu11NiSb4S13. Finalmente, el estudio de las propiedades de los materiales para la construcción de GTEs usando simulaciones numéricas demostró ser una herramienta robusta y práctica para evaluar el desempeño de este dispositivo.

Referencias bibliográficas

G.E. Valencia Ochoa, A.E. Benavides Gamero, J.M. Camargo Vanegas, A world overview of organic Rankine cycle as waste heat recovery alternative, Respuestas. 24 (2019) 6–13. https://doi.org/10.22463/0122820x.1843.

J.J. García Pabón, Phase-out of high GWP refrigerants in refrigeration systems: Status of process in Colombia, Respuestas. 24 (2019) 65–74. https://doi.org/10.22463/0122820x.1832.

J. Duarte, G. Amador, J. Garcia, A. Fontalvo, R. Vasquez Padilla, M. Sanjuan, A. Gonzalez Quiroga, Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels, Energy. 71 (2014) 137–147. https://doi.org/10.1016/j.energy.2014.04.040.

F.E. Moreno-García, J.J. Ramírez-Matheus, O.D. Ortiz-Ramírez, Sistema de supervisión y control para un banco experimental de refrigeración por compresión., Respuestas. 21 (2016) 97. https://doi.org/10.22463/0122820x.641.

M.G. Francisco, B.F. Enio, B. V Jos, Controladores fuzzy adaptativos para la optimización de un sistema chiller, Respuestas. 16 (2011) 5–12. https://doi.org/10.22463/r.v16i1.406.

E.D. Rincón Castrillo, J.R. Bermúdez Santaella, L.E. Vera Duarte, J.J. García Pabón, Modeling and simulation of an electrolyser for the production of HHO in Matlab- Simulink®, Respuestas. 24 (2019) 6–15. https://doi.org/10.22463/0122820x.1826.

S. Şevik, An analysis of the current and future use of natural gas-fired power plants in meeting electricity energy needs: The case of Turkey, Renew. Sustain. Energy Rev. 52 (2015) 572–586. https://doi.org/10.1016/j.rser.2015.07.102.

S. Mukherjee, A. Asthana, M. Howarth, R. Mcniell, Waste heat recovery from industrial baking ovens, Energy Procedia. 123 (2017) 321–328. https://doi.org/10.1016/j.egypro.2017.07.259.

S. Ganguly, A. Date, A. Akbarzadeh, Heat recovery from ground below the solar pond, Sol. Energy. 155 (2017) 1254–1260. https://doi.org/10.1016/j.solener.2017.07.068.

B. Orr, A. Akbarzadeh, M. Mochizuki, R. Singh, A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes, Appl. Therm. Eng. 101 (2016) 490–495. https://doi.org/10.1016/j.applthermaleng.2015.10.081.

O. Högblom, R. Andersson, A simulation framework for prediction of thermoelectric generator system performance, Appl. Energy. 180 (2016) 472–482. https://doi.org/10.1016/j.apenergy.2016.08.019.

Y. Zhang, X. Wang, M. Cleary, L. Schoensee, N. Kempf, J. Richardson, High-performance nanostructured thermoelectric generators for micro combined heat and power systems, Appl. Therm. Eng. 96 (2016) 83–87. https://doi.org/10.1016/j.applthermaleng.2015.11.064.

S. Wu, H. Zhang, M. Ni, Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator, Energy. 112 (2016) 520–527. https://doi.org/10.1016/j.energy.2016.06.128.

Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer, Appl. Energy. 215 (2018) 690–698. https://doi.org/10.1016/j.apenergy.2018.02.062.

A. Allouhi, A. Boharb, T. Ratlamwala, T. Kousksou, M.B. Amine, A. Jamil, A.A. Msaad, Dynamic analysis of a thermoelectric heating system for space heating in a continuous-occupancy office room, Appl. Therm. Eng. 113 (2017) 150–159. https://doi.org/10.1016/j.applthermaleng.2016.11.001.

C. Lertsatitthanakorn, Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator, Bioresour. Technol. 98 (2007) 1670–1674. https://doi.org/10.1016/j.biortech.2006.05.048.

G. Komisarchik, Y. Gelbstein, D. Fuks, Solubility of Ti in thermoelectric PbTe compound, Intermetallics. 89 (2017) 16–21. https://doi.org/10.1016/j.intermet.2017.05.016.

H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck, T.H. Kim, J.Y. Song, J. Park, K.-H. Jeong, M.-H. Cho, Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface, Nano Energy. 47 (2018) 374–384. https://doi.org/10.1016/j.nanoen.2018.03.009.

Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide, Energy Environ. Sci. 5 (2012) 5246–5251. https://doi.org/10.1039/C1EE02465E.

J.C. Diez, S. Rasekh, M.A. Madre, M.A. Torres, A.E. Sotelo, High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt, Boletín La Soc. Española Cerámica y Vidr. 57 (2018) 1–8. https://doi.org/10.1016/j.bsecv.2017.10.003.

Y. Lei, C. Cheng, Y. Li, R. Wan, M. Wang, Microwave synthesis and enhancement of thermoelectric figure of merit in half-Heusler TiNiSb x Sn 1−x, Ceram. Int. 43 (2017) 9343–9347. https://doi.org/10.1016/j.ceramint.2017.04.100.

Z. Li, Y. Chen, J.-F. Li, H. Chen, L. Wang, S. Zheng, G. Lu, Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method, Nano Energy. 28 (2016) 78–86. https://doi.org/10.1016/j.nanoen.2016.08.008.

J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Mater. 2 (2010) 152–158. https://doi.org/10.1038/asiamat.2010.138.

P. Fernández-Yañez, O. Armas, A. Capetillo, S. Martínez-Martínez, Thermal analysis of a thermoelectric generator for light-duty diesel engines, Appl. Energy. 226 (2018) 690–702. https://doi.org/10.1016/j.apenergy.2018.05.114.

N. Muralidhar, M. Himabindu, R.V. Ravikrishna, Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator, Energy. 148 (2018) 1046–1059. https://doi.org/10.1016/j.energy.2018.02.023.

J.-H. Meng, X.-X. Zhang, X.-D. Wang, Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses, Int. J. Heat Mass Transf. 80 (2015) 227–235. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.023.

W.-H. Chen, S.-R. Huang, X.-D. Wang, P.-H. Wu, Y.-L. Lin, Performance of a thermoelectric generator intensified by temperature oscillation, Energy. 133 (2017) 257–269. https://doi.org/10.1016/j.energy.2017.05.091.

W. Bai, X. Yuan, X. Liu, Numerical investigation on the performances of automotive thermoelectric generator employing metal foam, Appl. Therm. Eng. 124 (2017) 178–184. https://doi.org/10.1016/j.applthermaleng.2017.05.146.

K. Tappura, A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications, Renew. Energy. 120 (2018) 78–87. https://doi.org/10.1016/j.renene.2017.12.063.

W.-H. Chen, C.-C. Wang, C.-I. Hung, C.-C. Yang, R.-C. Juang, Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator, Energy. 64 (2014) 287–297. https://doi.org/10.1016/j.energy.2013.10.073.

X.-D. Wang, Y.-X. Huang, C.-H. Cheng, D. Ta-Wei Lin, C.-H. Kang, A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field, Energy. 47 (2012) 488–497. https://doi.org/10.1016/j.energy.2012.09.019.

J.-H. Meng, X.-D. Wang, X.-X. Zhang, Transient modeling and dynamic characteristics of thermoelectric cooler, Appl. Energy. 108 (2013) 340–348.
https://doi.org/10.1016/j.apenergy.2013.03.051.

S. Battiston, C. Fanciulli, S. Fiameni, A. Famengo, S. Fasolin, M. Fabrizio, One step synthesis and sintering of Ni and Zn substituted tetrahedrite as thermoelectric material, J. Alloys Compd. 702 (2017) 75–83. https://doi.org/10.1016/j.jallcom.2017.01.187.

Y.H. Yeo, T.S. Oh, Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes, Mater. Res. Bull. 58 (2014) 54–58. https://doi.org/10.1016/j.materresbull.2014.04.046.

W.-H. Chen, S.-R. Huang, Y.-L. Lin, Performance analysis and optimum operation of a thermoelectric generator by Taguchi method, Appl. Energy. 158 (2015) 44–54. https://doi.org/10.1016/j.apenergy.2015.08.025.

W.-H. Chen, C.-Y. Liao, C.-I. Hung, A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect, Appl. Energy. 89 (2012) 464–473. https://doi.org/10.1016/j.apenergy.2011.08.022.

W.-H. Chen, P.-H. Wu, Y.-L. Lin, Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm, Appl. Energy. 209 (2018) 211–223. https://doi.org/10.1016/j.apenergy.2017.10.094.
Cómo citar
Medina-Delgado, B., Valencia-Ochoa, G., & Duarte-Forero, J. (2020). Estudio de la influencia de las propiedades del material en el proceso de conversión de energía de generadores termoeléctricos para aplicaciones de recuperación de calor. Respuestas, 25(3). https://doi.org/10.22463/0122820X.2824

Descargas

La descarga de datos todavía no está disponible.
Publicado
2020-09-01
Sección
Artículos de Investigación

Artículos más leídos del mismo autor/a