Sensitivity analysis of plastic deformation on flexible pavement structures
Análisis de sensibilidad de la deformación plástica en las estructuras de pavimento flexible
Main Article Content
In Colombia, one of the most frequent damages of flexible pavement structures is the plastic deformation commonly known as rutting, which consists of a channelized depression in the circulation footprint of vehicles produced by the effect of traffic loads, variations in the service temperature of the pavement, deficiencies in the design and construction of asphalt mixtures or due to the presence of weak subgrade. The rutting hinders the maneuverability of vehicles, reduces road safety and affects the comfort level for the user. The objective of this research is to perform the sensitivity analysis of the variables that influence accumulated plastic deformation or rutting in flexible pavement structures using the mechanistic model. The study of the plastic deformation or rutting was carried out by applying the methodology presented in the guide for the mechanical - empirical design of flexible pavements "Mechanistic-Empirical Pavement Design Guide - MEPDG" developed by the AASHTO (American Association of State Highway and Transportation Officials) versions 2008 and 2015, which is one of the most widely implemented methodologies for the design of new pavement structures, as well as for their maintenance and rehabilitation. The scope of the study is at the theoretical modeling level in order to understand the phenomenon of permanent plastic deformation of flexible pavement structures. The study shows that the variables most sensitive to rutting of flexible pavement structures are: the weighted annual average temperature - TMAP, followed by the design traffic, the dynamic modulus of the asphalt mixture, the load per tire, the thickness of the asphalt layer, the contact pressure and depth of the bearing layer; This information is very useful for pavement structure design engineers.
Downloads
Article Details
G. Thenoux, y O. Carrillo, Análisis de casos de ahuellamiento en mezclas asfálticas chilenas. Santiago, Chile, 2002.
D. Páez, y H. Pereira, Estudio de ahuellamiento en mezclas asfálticas. Universidad de los Andes. Bogotá. Colombia, 2001.
L. Parra, y J. Pedroza, “Estudio sobre el efecto de la granulometría en la resistencia al ahuellamiento de mezclas asfálticas, Ingenio Magno, vol. 6, no.1, pp. 112-127, 2015.
MINISTERIO DE TRANSPORTE. https://www.invias.gov.co/index.php/informacion-institucional/2-principal/57-estado-de-la-red-vial
ARA. Guide for mechanistic – empirical design of the new and rehabilitated pavement structures – NCHRP, report 1-37A. Champaign. Estados Unidos. 2004.
G. Romero, Estudio de ahuellamiento en la carretera Iirsa norte, tramo 6, sector Ovalo - Cáceres DV. Suliana. Facultad de Ingeniería, Universidad de Piura. Perú. 2012.
B. Bakhshi, y M. Arabani, “Numerical evaluation of rutting in rubberized asphalt mixture using finite element modeling based on experimental viscoelastic properties”. Journal of materials in civil engineering. American Society of Civil Engineering. 2018. Doi: 10.1061/(ASCE)MT. 1943-5533-000216.
J. Campana, Consideraciones de la deformación permanente en el diseño estructural. Asociación Argentina de la Carretera. Comisión permanente del asfalto. Argentina. 2014.
R. Mallick, y T. El-Karehi. Pavement engineering – Principles and practice. Taylor &Francis. Nueva York. 2013.
H. Rondón, Ahuellamiento y fatiga de mezclas asfálticas. Universidad Distrital Francisco José de Caldas. Bogotá. Colombia.2012.
C. Higuera, N. Olarte, y R. Soler. “Effect of the recycled rubber grain in the rutting of an asphalt mixture type MD-12”. Revista Respuestas. Vol. 24, no. 1, pp. 84-94. 2019. doi.org/10.22463/0122820X.1810
B. Verhaeghe, P. Myburgh, y E. Denneman, “Asphalt rutting and prevention. Proceedings of the 9th conference on asphalt pavements for solution for Southern Africa”. Botswana. 2007.
F. Morea. Deformación permanente en mezclas asfálticas – problemática y medición en laboratorio. Universidad Nacional de la Plata. Argentina. 2018.
AASHTO. Guide for design of structure. Estados Unidos. 2013.
AASHTO. Mechanistic – empirical pavement design guide – A manual of practice. Washington, Estados Unidos. 2008.
. AASHTO. Mechanistic – empirical pavement design guide – A manual of practice. Washington, Estados Unidos. 2015.
Austroads. Guide to pavement technology Parte 2 – Pavement structural design. Sydney. Australia. 2017.
C. Trejos, T. Ávila, J. Aguiar y L. Loria. Mechanical empirical design software for flexible pavements, Transportation Research Board. Annual Meeting. 2018.
M. Martínez, y I. Pérez. “Mechanistic – empirical pavement design guide: feature and distinctive elements”. Revista de la construction – journal of construction. Vol. 14, no.1, pp, 32-40. 2015.
S. Erlingsson, “Rutting development in a flexible pavement structure, road materials and pavement design”, Taylor & Francis. vol. 13:2, pp. 218-234. 2012. http://dx.doi.org/10.108011480629.2012.682383.
INVIAS. Manual de diseño de pavimentos asfálticos en vías con medios y altos volúmenes de tránsito. Segunda versión. 2018.
L. Vásquez, y F. García, “An overview of asphalt pavement design streets and road”. Facultad de Ingeniería. Universidad de Antioquia. Vol. 98, pp. 10-26. Medellín. Colombia. 2021. Doi: 10.17530/udea.redin.20200367.
C. Higuera-Sandoval. Mecánica de pavimentos – Principios básicos. Universidad Pedagógica y Tecnológica de Colombia. Tunja. 2012.
C. Sandoval y A. Orobio, “Efectos de las tolerancias de construcción en el desempeño de los pavimentos flexibles,” Rev. Ing. construcción, vol. 28, no. 3, 2013, doi: 10.4067/s0718-50732013000300004.