Aplicación de elementos finitos para el chequeo de losas de concreto hidráulico
Application of finite elements for the check of hydraulic concrete SLABS
Contenido principal del artículo
El mundo de los pavimentos, ha cobrado fuerza desde que el ser humano tuvo la necesidad de movilizarse de un lugar a otro de una manera fácil, rápida y confiable para el transporte de personas y/o mercancías. El pavimento rígido; en los últimos años, ha tenido mayor participación en la construcción vial ya que proporciona una alta resistencia en el soporte de cargas, una mayor durabilidad y poco mantenimiento después de construido. Es por ello, que este tipo de pavimento, está siendo objeto de mayor investigación siendo el avance tecnológico, una herramienta que incluye el uso de los elementos finitos para el estudio y diseño de pavimentos rígidos. EverFe 2.26, es el software objeto y método de estudio con el cual; se pretende analizar una estructura de pavimento rígido compuesta por subrasante, subbase granular y losas de concreto hidráulico con el fin de determinar esfuerzos y deflexiones ocasionados por factores de fricción, alabeo y cargas de transito usando dos tipos de escenario: 1. Análisis de Parámetros de diseño para solo una losa y 2. Análisis de parámetros de diseño para un conjunto de losas haciendo uso de las dovelas y barras de amarre. Los resultados dados, serán punto de comparación para determinar esfuerzos y deflexiones máximas en ambos escenarios; obteniendo directamente, la justificación del importante uso de los elementos de transmisión de cargas y lo esencial de la aplicación de elementos finitos a la hora de estudiar el comportamiento de los pavimentos rígidos en la obtención de resultados más precisos y reales.
Descargas
Detalles del artículo
Shaban, A., Alsabbagh, A., Wtaife, S., & Suksawang, N. (2020). Effect of Pavement Foundation Materials on Rigid Pavement Response. IOP Conference Series: Materials Science and Engineering, 671, 012085.
Šešlija, M., Radović, N., & Togo, I. (2016). A FEM Modeling of the Concrete Pavement Made of the Recycling Material. MATEC Web of Conferences, 73, 04003.
M.G, G., Agarwal, A., Kumar, R., & Choubey, N. (2012). Analysis of rigid pavement using Everfe. National Conference On Contemporary Civil Engineering, 1313-1321.
Meshram, K., Goliya, H.S., & Poddar, A., (2013). Stress analysis and determination of effective k-value for rigid pavement. International Journal of Engineering Science and Technology. Vol 5. Ed. 3, 468-473.
Gu, H., Jiang, X., Li, Z., Yao, K., & Qiu, Y. (2019). Comparisons of Two Typical Specialized Finite Element Programs for Mechanical Analysis of Cement Concrete Pavement. Mathematical Problems In Engineering, 2019, 1-11. https://doi.org/10.1155/2019/9178626.
Davids, William G., Zongmu Wang, George Turkiyyah, Joe P. Mahoney, and David Bush. (2003). "Three-Dimensional Finite Element Analysis of Jointed Plain Concrete Pavement with Everfe2.2". Transportation Research Record: Journal of The Transportation Research Board 1853 (1): 92-99.
Jensen, E., & Hansen, W. (2006). Nonlinear aggregate interlock model for concrete pavements. International Journal of Pavement Engineering, 7(4), 261-273.
Kim, S., Ceylan, H., & Gopalakrishnan, K. (2014). Finite element modeling of environmental effects on rigid pavement deformation. Frontiers of Structural and Civil Engineering, 8(2), 101-114.
Daniel, C., & Chairuddin, F. (2017). Compare the Results Between Model Laboratory-test for Rigid Pavement and EverStressFE Software Analysis. Procedia Engineering, 171, 1377-1383.
Pallares, M., & Pulecio, J. (2017). Aplicabilidad del Método de los Elementos Finitos Análisis y Dimensionamiento de Losas JCPC para Carreteras de Dos Carriles. ITECKNE. 14, 148-153. http://dx.doi.org/10.15332/iteckne.v14i2.1769.
Jeong, J., Park, J., Lim, J., & Kim, S. (2014). Testing and Modelling of Friction Charecteristics Between Concreto Slab and Subbase Layers. Road Materials and Pavement Design, 2014. 114-130. http://dx.doi.org/10.1080/14680629.2013.863161.
Kim, S., Park, J., & Jeong, J. (2013). Effect of temperature-induced load on airport concrete pavement behavior. KSCE Journal Of Civil Engineering, 18(1), 182-187. https://doi.org/10.1007/s12205-014-0056-7.
Londoño Naranjo, C., & Alvarez Pabón, J. (2008). Manual de Diseño de pavimentos de concreto: para vías con bajos, medios y altos volúmenes de tránsito (p. 114). ICPC. http://invias.gov.co.
Ministerio de transporte. (2004). Resolución 4100 (pp. 2-8). Bogotá: República de Colombia.
Davids, W. (2001). 3D Finite Element Study on Load Transfer at Doweled Joints in Flat and Curled Rigid Pavements. International Journal of Geomechanics, 1(3), 309-323.