Fault Detection using Principal Component Analysis and Mean Value Modeling in a 2 MW gas engine
Detección de fallas usando Análisis de Componentes Principales y Modelado de Valor Medio en un motor a gas natural de 2 MW
Main Article Content
This paper describes the combination of statistical techniques and mathematical modeling in order to developed a fault detection system in a 2 MW natural gas engine under actual operation conditions. The Mixing chamber, turbochargers, intake and exhaust manifolds, cylinders, throttle and bypass valves, and the electric generator, which are the main components of the gas engine, were studied under a mean value engine to complement the statistical analysis. Objective: The main objective of this paper is to integrate two approaches in order to relate the faults with the changes of mean thermodynamic values of the system, helping to sustain the engine in optimal operating conditions in terms of reliability. The Principal Component Analysis (PCA), a multivariate statistical fault detection technique, was used to analyze the historical data from the gas engine to detect abnormal operation conditions, by means of statistical measures such as Square Prediction Error (SPE) and T2. These abnormal operation conditions are categorized using cluster techniques and contributions plots, to later examine its causes with the support of the results of a mean value mathematical model proposed for the system. The integration of the proposed methods allowed successfully identify which component or components of the engine might be malfunctioning. Once combined, these two methods were able to accurately predict and identify faults as well as shut downs of the gas engine during a month of operation. Statistical analysis was used to detect faults on a 2 MW industrial gas engine, also the result were compared with a mean value model in order to detect variations of the thermodynamic properties of the system at abnormal conditions.
Downloads
Article Details
G. Valencia-Ochoa, M. Vanegas-Chamorro, and E. Villicaña-Ortiz, “Disponibilidad geográfica y temporal de la energía solar en la Costa Caribe colombiana”, 1st ed: Universidad del Atlántico, 2016.
G. Valencia-Ochoa, M. Vanegas-Chamorro and J. Polo-Jimenez, “Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe Colombiana con énfasis en la Guajira”, 1st ed. Universidad del Atlántico, 2016.
L. L. Hurtado-Cortes, E. Villarreal-López, and L. Villarreal-López, “Detección y diagnóstico de fallas mediante técnicas de inteligencia artificial, un estado del arte”, DYNA, vol. 83, no. 199, 2016.
S. Qin, “Statistical process monitoring: basics and beyond,” Journal of Chemometrics, vol. 17, no. 8‐9, pp. 480–502, 2003.
R. Isermann, “Model-based fault-detection and diagnosis - Status and applications”, Annual Reviews in Control, vol. 29, pp. 71–85, 2005.
A. Glowacz and Z. Glowacz, “Diagnosis of stator faults of the single-phase induction motor using acoustic signals”, Applied Acoustics, vol. 117, pp. 20–27, 2017.
F. Kimmich, A. Schwarte and R. Isermann, “Fault detection for modern Diesel engines using signal- and process model-based methods”, Control Engineering Practice, vol. 13, no. 2, pp. 189–203, 2005.
Y. Oguz and M. Dede, “Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks”, Energy Conversion and Management, vol. 52, no. 1, pp. 675–686, 2011.
J. C. M. Oliveira, K. Pontes, I. Sartori, and M. Embiruçu, “Fault Detection and Diagnosis in dynamic systems using Weightless Neural Networks,” Expert Systems with Applications, vol. 84, pp. 200–219, 2017.
D. M. Himmelblau, “Use of Artificial Neural Networks to Monitor Faults and for Troubleshooting in the Process Industries”, IFAC Proceedings volumes, vol. 25, no. 4, pp. 201–206, 1992.
P. M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results”, Automatica, vol. 26, no. 3, pp. 459–474, 1990.
M. A. Moore and L., Kramer, “Expert Systems in On-Line Process Control”, in Third International Conference on Chemical Process Control, Asilomar, pp. 839–867, 1986.
R. Isermann and P. Ballé, “Trends in the application of model-based fault detection and diagnosis of technical processes”, Control Engineering Practice, vol. 5, no. 5, pp. 709–719, 1997.
F. Farhani, A. Zaafouri and A. Chaari, “Real time induction motor efficiency optimization”, Journal of the Franklin Institute, vol. 354, no. 8, pp. 3289–3304, 2017.
L. Desborough and T. Harris, “Performance assessment measures for univariate feedback control”, The Canadian Journal of Chemical Engineering, vol. 70, no. 6, pp. 1186-1197, 1992.
R. Dunia and S. Joe Qin, “Joint diagnosis of process and sensor faults using principal component analysis”, Control Engineering Practice, vol. 6, no. 4, pp. 457–469, 1998.
D. Godbole and R. Sengupta, “Tools for the design of fault management systems [automated highway systems],” in Proceedings of Conference on Intelligent Transportation Systems, 1997, pp. 159–164.
H. Alvarez, R. Lamanna, P. Vega and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Revista Iberoamericana de Automática e Informática Industrial, vol. 6, no. 3, pp. 10–20, 2009.
Á. A. Ruiz and H. Álvarez, “Escalamiento de Procesos Químicos y Bioquímicos basado en un Modelo Fenomenológico,” Información tecnológica, vol. 22, pp. 33–52, 2011.
C. A. Gómez, Y. A. Calderón, and H. Álvarez, “Building phenomenological based semi-physical models: fermentation process case,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 6, no. 2, pp. 28–39, 2008.
M. C, Verde, “Detección de Fallas usando Análisis de Componentes Principales”, Congreso Anual la AMCA 2004, vol. 1, pp. 431–436, 2004.
J. Kresta, J. F. Macgregor, and T. E. Marlin, “Multivariate statistical monitoring of process operating performance,” Can. J. Chem. Eng., vol. 69, no. 1, pp. 35–47, 1991.
J. F. MacGregor, “Multivariate statistical methods for monitoring large data sets from chemical processes.,” in Proceedings of AIChE Annual Meeting, 1989.
B. M. Wise, “Adapting Multivariate Analysis for Monitoring and Modeling of Dynamic Processes.” University of Washington, 1991.
R. E. H. Miller, P; Swanson, “Contribution plots: a missing link in multivariate quality control.,” Applied Mathematics and Computer Science, vol. 8, pp. 775, 1998.
D. R. Lewin, “Predictive maintenance using PCA,” Control Engineering Practice, vol. 3, no. 3, pp. 415–421, 1995.
R. Dunia, S. J. Qin, T. F. Edgar and T. J. McAvoy, “Identification of faulty sensors using principal component analysis”, AIChE Journal, vol. 42, no. 10, pp. 2797-2812, 1996.
S. Yoon and J. F. MacGregor, “Statistical and causal model-based approaches to fault detection and isolation”, AIChE Journal, vol. 46, no. 9, pp. 1813–1824, 2000.
A. Norvilas, A. Negiz, J. DeCicco, and A. Çinar, “Intelligent process monitoring by interfacing knowledge-based systems and multivariate statistical monitoring”, Journal of Process Control, vol. 10, no. 4, pp. 341–350, 2000.
D. Leung and J. Romagnoli, “An integration mechanism for multivariate knowledge-based fault diagnosis”, Journal of Process Control, vol. 12, no. 1, pp. 15–26, 2002.
W. R. Zwick and W. Velicer, “Comparison of Five Rules of Determining the Number of Components to Retain,” Psychological Bulletin, vol. 99, pp. 432–442, 1986.
E. Hoyos, D. López, and H. Alvarez, “A phenomenologically based material flow model for friction stir welding,” Materials Design, vol. 111, pp. 321–330, 2016.
J. Garcia Tirado, C. Zuluaga-Bedoya, V. Jaramillo, and S. Jiménez Gómez, “Phenomenological-based Semi-Physical Model for a Pressure Control Plan”, 2017.
F. E. Moreno-García, J. J. Ramírez-Matheus, y O. D. Ortiz-Ramírez, “Sistema de supervisión y control para un banco experimental de refrigeración por compresión”, Respuestas, vol. 21, no. 1, pp. 97-107, 2016.
G. Valencia-Ochoa, C. Acevedo-Peñaloza y J.P. Rojas, “Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids”, Applied Sciences, vol. 9, no. 21, pp. 4526, 2019.