Study of the influence of material properties in the energy conversion process of thermoelectric generators for waste heat recovery applications
Estudio de la influencia de las propiedades del material en el proceso de conversión de energía de generadores termoeléctricos para aplicaciones de recuperación de calor
Main Article Content
The present study analyzed the effect of material properties in the energy conversion process of Thermoelectric Generators (TEGs). For the development of the study, two materials whose properties vary with respect to temperature (Bi0.4Sb1.6Te3 and Cu11NiSb4S13) and a material with constant properties (Bi2Te3) were analyzed. Through numerical simulation processes, each material was subjected to different temperature differences to monitor the effect on the electrical output power, heat flux, and energy conversion efficiency. The results showed that neglecting the temperature dependence produces higher or lower performance estimations depending on the temperature levels experienced by the TEG. Overall, the material Bi2Te3 displayed 35% more electrical power output and conversion efficiency compared to the Bi0.4Sb1.6Te3 material. Therefore, considering the variability of thermoelectric materials demonstrated to be essential to obtain realistic process performance. Also, the heat flux produced by the Fourier effect presents the most significant impact on the electrical power generation of the TEG. Among materials with variable properties, the Bi0.4Sb1.6Te3 increases the conversion efficiency up to 25% compared to the Cu11NiSb4S13. In conclusion, the study of material properties using numerical simulations emerged as a robust and practical tool to evaluate TEG performance.
Downloads
Article Details
J.J. García Pabón, Phase-out of high GWP refrigerants in refrigeration systems: Status of process in Colombia, Respuestas. 24 (2019) 65–74. https://doi.org/10.22463/0122820x.1832.
J. Duarte, G. Amador, J. Garcia, A. Fontalvo, R. Vasquez Padilla, M. Sanjuan, A. Gonzalez Quiroga, Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels, Energy. 71 (2014) 137–147. https://doi.org/10.1016/j.energy.2014.04.040.
F.E. Moreno-García, J.J. Ramírez-Matheus, O.D. Ortiz-Ramírez, Sistema de supervisión y control para un banco experimental de refrigeración por compresión., Respuestas. 21 (2016) 97. https://doi.org/10.22463/0122820x.641.
M.G. Francisco, B.F. Enio, B. V Jos, Controladores fuzzy adaptativos para la optimización de un sistema chiller, Respuestas. 16 (2011) 5–12. https://doi.org/10.22463/r.v16i1.406.
E.D. Rincón Castrillo, J.R. Bermúdez Santaella, L.E. Vera Duarte, J.J. García Pabón, Modeling and simulation of an electrolyser for the production of HHO in Matlab- Simulink®, Respuestas. 24 (2019) 6–15. https://doi.org/10.22463/0122820x.1826.
S. Şevik, An analysis of the current and future use of natural gas-fired power plants in meeting electricity energy needs: The case of Turkey, Renew. Sustain. Energy Rev. 52 (2015) 572–586. https://doi.org/10.1016/j.rser.2015.07.102.
S. Mukherjee, A. Asthana, M. Howarth, R. Mcniell, Waste heat recovery from industrial baking ovens, Energy Procedia. 123 (2017) 321–328. https://doi.org/10.1016/j.egypro.2017.07.259.
S. Ganguly, A. Date, A. Akbarzadeh, Heat recovery from ground below the solar pond, Sol. Energy. 155 (2017) 1254–1260. https://doi.org/10.1016/j.solener.2017.07.068.
B. Orr, A. Akbarzadeh, M. Mochizuki, R. Singh, A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes, Appl. Therm. Eng. 101 (2016) 490–495. https://doi.org/10.1016/j.applthermaleng.2015.10.081.
O. Högblom, R. Andersson, A simulation framework for prediction of thermoelectric generator system performance, Appl. Energy. 180 (2016) 472–482. https://doi.org/10.1016/j.apenergy.2016.08.019.
Y. Zhang, X. Wang, M. Cleary, L. Schoensee, N. Kempf, J. Richardson, High-performance nanostructured thermoelectric generators for micro combined heat and power systems, Appl. Therm. Eng. 96 (2016) 83–87. https://doi.org/10.1016/j.applthermaleng.2015.11.064.
S. Wu, H. Zhang, M. Ni, Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator, Energy. 112 (2016) 520–527. https://doi.org/10.1016/j.energy.2016.06.128.
Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer, Appl. Energy. 215 (2018) 690–698. https://doi.org/10.1016/j.apenergy.2018.02.062.
A. Allouhi, A. Boharb, T. Ratlamwala, T. Kousksou, M.B. Amine, A. Jamil, A.A. Msaad, Dynamic analysis of a thermoelectric heating system for space heating in a continuous-occupancy office room, Appl. Therm. Eng. 113 (2017) 150–159. https://doi.org/10.1016/j.applthermaleng.2016.11.001.
C. Lertsatitthanakorn, Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator, Bioresour. Technol. 98 (2007) 1670–1674. https://doi.org/10.1016/j.biortech.2006.05.048.
G. Komisarchik, Y. Gelbstein, D. Fuks, Solubility of Ti in thermoelectric PbTe compound, Intermetallics. 89 (2017) 16–21. https://doi.org/10.1016/j.intermet.2017.05.016.
H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck, T.H. Kim, J.Y. Song, J. Park, K.-H. Jeong, M.-H. Cho, Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface, Nano Energy. 47 (2018) 374–384. https://doi.org/10.1016/j.nanoen.2018.03.009.
Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide, Energy Environ. Sci. 5 (2012) 5246–5251. https://doi.org/10.1039/C1EE02465E.
J.C. Diez, S. Rasekh, M.A. Madre, M.A. Torres, A.E. Sotelo, High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt, Boletín La Soc. Española Cerámica y Vidr. 57 (2018) 1–8. https://doi.org/10.1016/j.bsecv.2017.10.003.
Y. Lei, C. Cheng, Y. Li, R. Wan, M. Wang, Microwave synthesis and enhancement of thermoelectric figure of merit in half-Heusler TiNiSb x Sn 1−x, Ceram. Int. 43 (2017) 9343–9347. https://doi.org/10.1016/j.ceramint.2017.04.100.
Z. Li, Y. Chen, J.-F. Li, H. Chen, L. Wang, S. Zheng, G. Lu, Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method, Nano Energy. 28 (2016) 78–86. https://doi.org/10.1016/j.nanoen.2016.08.008.
J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Mater. 2 (2010) 152–158. https://doi.org/10.1038/asiamat.2010.138.
P. Fernández-Yañez, O. Armas, A. Capetillo, S. Martínez-Martínez, Thermal analysis of a thermoelectric generator for light-duty diesel engines, Appl. Energy. 226 (2018) 690–702. https://doi.org/10.1016/j.apenergy.2018.05.114.
N. Muralidhar, M. Himabindu, R.V. Ravikrishna, Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator, Energy. 148 (2018) 1046–1059. https://doi.org/10.1016/j.energy.2018.02.023.
J.-H. Meng, X.-X. Zhang, X.-D. Wang, Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses, Int. J. Heat Mass Transf. 80 (2015) 227–235. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.023.
W.-H. Chen, S.-R. Huang, X.-D. Wang, P.-H. Wu, Y.-L. Lin, Performance of a thermoelectric generator intensified by temperature oscillation, Energy. 133 (2017) 257–269. https://doi.org/10.1016/j.energy.2017.05.091.
W. Bai, X. Yuan, X. Liu, Numerical investigation on the performances of automotive thermoelectric generator employing metal foam, Appl. Therm. Eng. 124 (2017) 178–184. https://doi.org/10.1016/j.applthermaleng.2017.05.146.
K. Tappura, A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications, Renew. Energy. 120 (2018) 78–87. https://doi.org/10.1016/j.renene.2017.12.063.
W.-H. Chen, C.-C. Wang, C.-I. Hung, C.-C. Yang, R.-C. Juang, Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator, Energy. 64 (2014) 287–297. https://doi.org/10.1016/j.energy.2013.10.073.
X.-D. Wang, Y.-X. Huang, C.-H. Cheng, D. Ta-Wei Lin, C.-H. Kang, A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field, Energy. 47 (2012) 488–497. https://doi.org/10.1016/j.energy.2012.09.019.
J.-H. Meng, X.-D. Wang, X.-X. Zhang, Transient modeling and dynamic characteristics of thermoelectric cooler, Appl. Energy. 108 (2013) 340–348.
https://doi.org/10.1016/j.apenergy.2013.03.051.
S. Battiston, C. Fanciulli, S. Fiameni, A. Famengo, S. Fasolin, M. Fabrizio, One step synthesis and sintering of Ni and Zn substituted tetrahedrite as thermoelectric material, J. Alloys Compd. 702 (2017) 75–83. https://doi.org/10.1016/j.jallcom.2017.01.187.
Y.H. Yeo, T.S. Oh, Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes, Mater. Res. Bull. 58 (2014) 54–58. https://doi.org/10.1016/j.materresbull.2014.04.046.
W.-H. Chen, S.-R. Huang, Y.-L. Lin, Performance analysis and optimum operation of a thermoelectric generator by Taguchi method, Appl. Energy. 158 (2015) 44–54. https://doi.org/10.1016/j.apenergy.2015.08.025.
W.-H. Chen, C.-Y. Liao, C.-I. Hung, A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect, Appl. Energy. 89 (2012) 464–473. https://doi.org/10.1016/j.apenergy.2011.08.022.
W.-H. Chen, P.-H. Wu, Y.-L. Lin, Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm, Appl. Energy. 209 (2018) 211–223. https://doi.org/10.1016/j.apenergy.2017.10.094.