Bifurcación de hopf en un modelo sobre resistencia bacteriana
Bifurcación de hopf en un modelo sobre resistencia bacteriana
Main Article Content
In 2011 Romero J. in his master’s thesis “Mathematical models for bacterial resistance to antibiotics” formulated and analyzed a nonlinear system of ordinary differential equations describing the acquisition of bacterial resistance through two mechanisms: action plasmids and treatment with antibiotics. Under certain conditions the system has three equilibrium points and one of them coexist both sensitive and resistant bacteria. Numerical simulations performed in this work suggest that around this equilibrium point exists a Hopf bifurcation. From these observations we have developed a project which aims to analyze the conditions to be satisfied by the parameters of the model, to ensure the existence of this bifurcation and classify their stability. The main objective of the conference is to present the progress made in the development of this project.
Downloads
Article Details
Alvarez-Ramírez J., Avendaño J., Esteva L., Flores J., Fuentes-Allen J., Gómez G. and Estrada J., within-host population dynamics of antibiotic-resistant M. tuberculosis, Math. And Bio, J, 64(2007), pp. 35-67.
Guilfoile, P. Deadl and Epidemic; antibiotic-Resistant Bacteria, Chelsea House Publisher U. K., 2007.
Kuztnezof, Y. Elements of applied Bifurcation Theory 2° edición Springer-verlag. New York. 1998.
Romero J. P., Modelos Matemáticos para la resistencia Bacteriana a los antibióticos. Tesis de Maestría. Universidad de Quindío.