A Characterization of variational thinking from linear-diaphantic equation problem solving and Grounded Theory

Una caracterización del pensamiento variacional desde la resolución de problemas de ecuaciones lineales diofánticas y la teoría fundamentada

Main Article Content

Luis Fernando Mariño
Mary Falk-de Losada
Rosa Virginia Hernández
Abstract

Variational thinking has been characterized from different contexts and perspectives, generally these works have been carried out from the solution of problems involving the concept of function in continuous domains. The research was focused on answering the research question, how is the nature of variational thinking manifested by mathematics teachers in training, when solving problems of diophantine linear equations? The work was guided by a qualitative approach with a strategic design based on grounded theory. As data sources, 6 learning sequences were designed and implemented to a group of 24 students who took a course of Number Theory and are training to become mathematics teachers. Among the findings, it stands out, how from particular situations, students make conjectures, discover relationships and patterns that lead them to perform actions to represent, organize and reorganize their knowledge. The simultaneous processes of data collection, codification and analysis and the method of constant comparison, led to theoretical saturation, making it possible to build the core of the theory, as a process between the variational operations of particularizing, conjecturing, relating, generalizing and proving, together with a series of actions manifested by the participants, when their variational thinking operates on problems involving diophantine linear equations of the form .

Keywords

Downloads

Download data is not yet available.

Article Details

References

Blanton , M., & Kaput, J. (2011). Functional Thinking as a Route Into Algebra in the Elementary Grades. En J. Cai , & E. Knuth (Edits.), Early Algebraization. Advances in Mathematics Education. Berlin,Heidelberg: Springer

Burton, L. (1984). Mathematical Thinking: The Struggle for Meaning. Journal for Research in Mathematics. Education, 15(1), 35-49. doi:10.2307/748986

Caballero, M., & Cantoral, R. (2013). Una caracterización de los elmentos del pensamiento y lenguaje variacional. En R. Flores (Ed.), Acta latinoamericana de Matemática Educativa (págs. 1197-1205). México, DF: Comité Latinaoamaericano de Matemática Educativa

Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. Research in Collegiate Mathematics Education III, CBMS, 7, 114-162

Castillo-Garsow, C. (2010). Teaching the Verhulst model: A teaching experiment in covariational reasoning and exponential growth. Tempe, AZ: Arizona State University

Castillo-Garsow, C. (2012). Continuous quantitative reasoning. En R. Mayes, R. Bonilla, L. Hatfield, & S. Belbase (Edits.), Quantitative reasoning: Current state of understanding, (Vol. 2, págs. 55-73). Laramie: University of Wyoming

Castillo-Garsow, C., Johnson, H., & Moore, K. (2013). Chunky and smooth images of change. For the Learning of Mathematics, 33(3), 31-37

Charmaz, K. (2014). Constructing grounded theory (2 ed.). Thousand Oaks, CA: Sage

Confrey, J. (1991). The concept of exponential functions: A student’s perspective. En L. Steffe (Ed.), Epistemological Foundations of Mathematical Experience. Recent Research in Psychology (págs. 124-159). New York, NY: Springer

Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66-86. doi:10.2307/749228

Corbin, J., & Strauss, A. (2008). Basics of qualitative research:Techniques and procedures for developing grounded theory (3 ed.). Thousand Oaks, CA, USA: SAGE Publications

Corbin, J., & Strauss, A. (2017). Conceptos básicos de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundamentada (4 ed.). Thousand Oaks, California, United States of America: SAGE Publications

Gagne, R. (1965). The Conditions of Learning. Holt. Rinehart and Winston

Mason, J., Burton, L., & Stacey, K. (2010). Thinking Mathematically (2 ed.). Harlow, UK: Pearson Education Limited

Mayer, R. (2010). Problem Solving and Reasoning. International Encyclopedia of Education, 273-278. doi:10.1016/B978-0-08-044894-7.00487-5

Ministerio de Educación Nacional de Colombia. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Recuperado el 30 de 05 de 2020, de http://cms.mineducacion.gov.co/static/cache/binaries/articles-340021_recurso_1.pdf?binary_rand=1223

Piaget, J. (1970). Piaget’s Theory. En P. Mussen (Ed.), Carmichael’s Manual of Child Psychology (T. G. Gellerier & J. Langer, Trad., 3 ed., Vol. 1). New York: Wiley

Polya, G. (1945). Cómo plantear y resolver problemas. Editorial Trillas. México: Editorial Trillas

Polya, G. (1981). Mathematical Discovery. New York: Wiley

Saldanha, L., & Thompson, P. (1998). Re-thinking covariation from a quantitative perspective: Simultaneous continuous variation. En Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education

Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1- 38. doi:10.1177/002205741619600202

Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. En K. James, J., D. Carraher, & M. Blanton (Edits.), Algebra in the early grades (págs. 133-160)

Thompson, P. (1990). A theoretical model of quantity-based reasoning in arithmetic and algebraic. Center for Research in Mathematics & Science Education

Thompson, P. (2011). Quantitative reasoning and mathematical modeling. En L. Hatfield, S. Chamberlain, & S. Belbase (Edits.), New perspectives and directions for collaborative research in mathematics education. WISDOMe Mongraphs (Vol. 1, págs. 33-57). Laramie, WY: University of Wyoming

Thompson, P. W., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. (J. Cai , Ed.) Compendium for research in mathematics education, 421-456

Thompson, P., & Thompson, A. (1992, Abril). Images of rate. Paper presented at the Annual Meeting of the American Educational Research Association. San Francisco. Recuperado el 17 de 06 de 2020, de http://pat-thompson.net/PDFversions/1992Images.pdf

Thompson, P., Carlson, M., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with magnitudes: A hypothesis about foundational reasoning abilities in algebra 1, 2, 3. En L. Steffe, L. Hatfield, & K. Moore (Ed.), Epistemic algebraic students: Emerging models of students' algebraic knowing, 4, págs. 1-24

OJS System - Metabiblioteca |